Itation

Background & Motivation

- People can refer to the **shape** (geometry, topology) of an object to *distinguish* it among others objects.
- Existing studies rely primarily on properties like *color* and *spatial location* to refer to an object.
- Existing studies work explicitly with 2D images and are 'blind' to the *part-based* compositionality of 3D objects, or their *fine-grained* geometry.

This Work

- Builds a large scale multi-modal dataset calibrated for shapebased reference, aka ShapeGlot!
- Introduces novel speaker-listeners considering the effect of using:
 - a) 2D & 3D object representations
 - b) context-based discrimination
 - c) neural word-attention
 - d) pragmatic referential reasoning
- Discovers a plethora of surprising generalization scenarios.

www.bit.ly/shapeglot

literal speak

ShapeGlot: Learning Language for Shape Differentiation

Making ShapeGlot

- Tap on 'pure' 3D meshes

✓ Free-form language ✓ By construction: only about shape

Multi-modal Attentive Neural Listeners

Pragmatic Neural Speakers

	distractors		target	distractors		target	distrac	distractors	
ores	0.29	0.20	0.51	0.00	0.14	0.86	0.19	0	
aker	it has rollers on the feet			square back, straight legs			thin-est	thin-est sea	
ores	0.55	0.16	0.29	0.05	0.85	0.10	0.19	6	
aker	the one	the one with the circle on the bottom			the one with the thick-est legs			r wit	
				(1)	2)				

 $\beta \log(P_L(t|U,O)) + \frac{(1-\beta)}{|U|\alpha} \log(P_S(U|O,t))$

Listener's "fit

Speaker's "fit"

Panos Achlioptas¹, Judy Fan², Robert Hawkins³, Noah Goodman¹, Leonidas Guibas¹ ¹Stanford University, ²UC San Diego, ³Princeton University

✓ 80K Utterances, 4K contexts

word features

$$P \to \mathcal{L}(o_i, u) \in \mathbb{R}^1$$

point-cloud features

human utterance

incy shape back with armrest

	Input Modelity	Language Task	Object Task		
	Point Cloud	$67.6 \pm 0.3\%$	$66.4 \pm 0.7\%$		
No	Image	$81.2 \pm 0.5\%$	$77.4 \pm 0.7\%$		
Attention	Both	$83.1\pm0.4\%$	$78.9 \pm 1.0\%$		
W /:4L	Point Cloud	$67.4\pm0.3\%$	$65.6 \pm 1.4\%$		
	Image	$81.7\pm0.5\%$	$77.6\pm0.8\%$		
Attention	Both	$\textbf{83.7}\pm0.3\%$	$\textbf{79.6} \pm 0.8\%$		
Listoning Ablations					

Listening Adiations

Human Utterance

sleek rounded **arms**, expensive

Zero-shot Listening

(in unseen class & lang.)

gap between the back and the seat

target rs_____ 0.57).24 0.32 0.49 ith the thin-est legs

Speaker Architecture	Modality	Neural Listener	Human Listener
Context	Point Cloud	$59.1\pm2.0\%$	-
Unaware	Image	$64.0 \pm 1.7\%$	-
Litarol	Point Cloud	$71.5\pm\!1.3\%$	66.2
Literal	Image	$76.6 \pm 1.0\%$	68.3
Dragmatia	Point Cloud	$90.3\pm\!\!1.3\%$	69.4
Pragmatic	Image	$\textbf{92.2} \pm 0.5\%$	78.7

Speaking Ablations

Key Take Away Points

- Shape-based referential language is **robust** across classes (e.g. ZSL from 'chairs' to 'lamps').
- Language *alone* enables part-based *visual* reasoning.
- Pragmatic neural agents perform *significantly* better than literal ones.