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Abstract

The physical world surrounding us is extremely complex, with a myriad of unexplained phenomena

that seem at times mysterious or even magical. In our quest to understand, analyze and in the end,

improve our interactions with our surroundings, we decompose this complex world into tangible

entities we call objects. From Plato’s ancient Theory of Forms to the modern rules of Object-Oriented

Programming, objects with their associated classes and abstractions, have been a pillar of analysis and

philosophy. At the same time, human intelligence flourishes and demonstrates much of its elegance

in another human construct: that of natural languages. Humans have developed their languages

to enable them to efficiently communicate with each other for almost anything conceivable: from

never-seen imaginative scenarios to pragmatic nuisances regarding their surrounding objects.

My vision and motivation behind this thesis lie in bridging (a modest bit) the gap between these

two constructs, language and object entities, in modern-day computers via learning algorithms. In

this way, this thesis aims at contributing a step forward in the advancement of Artificial Intelligence

by introducing to the research community, smarter, latent, and oftentimes multi-modal representations

of 3D objects, that enhance their capacity to reason about them, with (or without) the aid of language.

Specifically, this thesis aims at introducing new methods and new problems at the intersection of

the computer science sub-fields of 3D Vision and computational Linguistics. It starts and dedicates

about half of its contents by establishing several novel (deep) Generative Neural Networks that can

generate/reconstruct/represent common three-dimensional objects (e.g., a 3D point cloud of chair).

These networks give rise to object representations that can improve some of the machines’ objects-

oriented analytical capacities: e.g., to better classify the objects of a collection, or generate novel

object instances, by combining a priori known object-parts, or by meaningful “latent” interpolations

among specified objects. The second half of the thesis, taps on these object representations to

introduce new problems and machine learning-based solutions for discriminative object-centric

language-comprehension (“listening”), and language-production (“speaking”). In this way, the
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second half complements and extends the first part of the thesis, by exploring multi-modal, language-

aware, object representations that enable a machine to listen or speak about object properties similar

to humans.

In summary, the three most salient contributions of this thesis are the following. First, it

introduces the first Generative Adversarial Network concerning the shape of everyday objects

captured via 3D point clouds and appropriate (and widely adopted) evaluation metrics. Second, it

introduces the problem and deep-learning-based solutions, for comprehending or generating linguistic

references concerning the shape of common objects, in contrastive contexts i.e., talk about how a

chair is different from two similar ones. Last, it explores a less controlled and harder scenario of

object-based reference in the wild. Namely, it introduces the problem and methods for language

comprehension concerning properties of real-world objects residing inside real-world 3D scenes,

e.g., it builds machines that can understand language concerning, say, the texture of an object or its

spatial arrangement. During the journey it took to establish these contributions, we published and

explored some highly relevant ideas, parts of which will be used to make a more complete exposition.

In short, these papers concern two high-level concepts. First, the creation of “latent spaces” that

are aware of the part-based structure of 3D objects, e.g., the legs vs. the back of a chair. Second,

the creation of latent spaces that exploit known correspondences among objects of a collection,

e.g., dense pointwise mappings, which can enhance the latent representation capacity in capturing

geometric- shape-differences among objects. As we show with the primary works presented in this

thesis, object-centric referential language contains a significant amount of part-based and fine-grained

shape understanding – naturally calling for a conceptually deep object learning and justifying the

ongoing need for the development of many types of Generative Networks to capture it fully.
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Chapter 1

Introduction

1.1 Motivation

Object-centric understanding of the world We live in a three-dimensional world. Our ability to

interact, analyze, and model our 3D surroundings is remarkable, and despite very significant efforts

we are still a long way from making machines that can act as autonomous agents: that can navigate,

interact, grasp, and ultimately reason about their surroundings with the ease, robustness, and breadth

that humans do. Perhaps this fact should not come as a big surprise considering that humans had a

“few” millennia of an evolutionary advantage to hone and improve such skills. Over these millennia,

a key concept that emerged in our consciousness (presumably) to facilitate our daily thinking and

livelihood was that of objects. Humans, effortlessly can break down the enormous complexity of

their surroundings by decomposing them into stable smaller entities we call objects. Objects can be

moved around, arranged, and re-arranged, while preserving their identity, essential form, and function

– e.g., a laptop remains a laptop irrespective of where it is placed, or of what color it has. Crucially

we compartmentalize objects into classes and categories which are extremely useful abstractions.

First, object classes provide a common naming mechanism for their instantiations (objects) which

can vary wildly. Second, they ease our understanding of object-properties/attributes, that oftentimes

are shared across instances of different classes, e.g., both a spoon and a bird can be green. Third,

categories promote a modular treatment of objects by enabling a relational understanding among

them, e.g, building hierarchies that reflect specialization: a bird is an animal - or, part-whole relations

e.g., the legs of a bird or of a chair.

As important this semantic unification of objects under a given category is, or the sharing of

common properties and parts across different categories, – mechanisms that focus on the similarities

1
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among objects – it is equally interesting to pay close attention to the complementary notion of “object

differences”. Capturing and characterizing all possible variations across the instances of a single
class of objects is a conceptually appealing quest that has driven much of the work presented in
this thesis. After all, how can we attain a complete machine-learnable understanding of objects

(even simple inanimate objects like chairs), if we cannot analyze all the ways that chairs are different

from each other? Surely, a complete generative mechanism/network/paradigm that can produce all

imaginable chairs in finite time has to be able to also understand at some level of abstraction how

(if) its output products are different. But before we embark in making such a complete generative

machine, it is worth asking how exactly, we, humans, perceive (as input) and communicate (as

output) differences among any predefined set of objects?

The above lines delineate the basic motivation for my thesis: to make generative and discrimi-

native networks that better understand 3D objects; which in turn is a stepping stone for enriching

computers and autonomous agents with human-level perception. To this end we first had to actually

develop the first generative network operating with 3D point clouds, introduce novel generative

networks that exploit the part-based composition of 3D objects, or exploit correspondence-based

geometric differences among objects, and then, finally, create data and methods that explore how 3D

objects are different in the eyes of a human who is expressing their differences in written language.

In the coming paragraphs, I will delve deeper in the intricacies involved behind these choices that

constitute this thesis.

1.1.1 Human perception and AI

3D visual perception Human perception implements several cognitive functions that put together

attempt to: organize, identify, and interpret all sensory input information we receive from our

environment – with the goal to represent and finally understand one’s received information. Visual

perception in particular, restricts this sensory input information to that coming from vision, which is

perhaps the most important of our five senses, considering that most information (⇠ 75%) received

daily by humans comes from visual signals [43]. Depending on the specific application, modern

AI systems usually require several components approximating functions of human intelligence to

operate based on sensory mechanisms: perception, prediction, planning, and control. In this thesis we

focus on 3D visual perception, where the sensory input comes from various 3D sensing mechanisms

such as depth sensors, multi-view stereo, laser range scanners, etc. While 2D (RGB) images are rich

in color/texture and are in abundance nowadays - they are also easily affected by illumination artifacts

and occlusions resulting from the shape/arrangements of the portrayed objects. After all, 2D images
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are only a single slice of our 3D world and like humans who perceived depth, it is natural to attempt

to teach an object-centric view-point to computers directly in 3D. There are in fact several reasons

why a 3D-based treatment of objects and representation-learning is chosen in this thesis. First, objects

in 3D sensory inputs preserve (almost perfectly) their intrinsic structure (e.g., part-hierarchies, or

object-scene arrangements), and regularities that if exploited correctly can provide an extra cue to

3D visual perception with the potential of improving an intelligent system’s operational performance.

Secondly, objects acquired with 3D sensory devices maintain their physical scales, and they are less

affected by lighting, occlusion, and projection artifacts compared to images; making tasks like object

recognition relatively easier compared to 2D-based alternatives. Last but not least, objects encoded in

3D formats like CAD models, provide a “clean” setup to analyze shape properties that are invariant

to the actual placement of the objects inside the hosting/ambient 3D space. These properties include

quantitities like the shape’s curvature or shape-part composition, which in CAD-like models do not

become obfuscated by the clutter that typical image data have. Of course, if we ever want to build

intelligent agents that co-operate “live” with us, like robots or agents in AR or VR, understanding

our shared world which is 3D becomes a necessity.

1.1.2 Generative models and perception

Are generative models important for modeling perception? Generative models can in theory

enable the modeling of the entire underlying data distribution of a class of objects, or more broadly

items, from a limited sample of observations. A good generative model trained with sufficient data

can discover and encode the principles behind the creation of the data instances (e.g., the rules used

by a template-model that assembles chair-parts resulting in a family of chairs), allowing not only to

interpolate among any two given data samples: filling the “gaps” of the manifold – but to certain

degree also go beyond the “seen” samples, and allow extrapolation.

A generative model that has managed to acquire even approximately such understanding of the

items that is modelling can be an indispensable tool for any machine that attempts to analyze the world.

First, it can be used to improve discriminative decision making and stimulus recognition/classification.

The are many studies showing improved classification performance with classifiers that exploit a

generative network. For instance, for common 3D objects (chairs, tables, cars, etc.), the study of Wu

et al. [290], and our own [6, 5], show that by means of transfer learning, it is beneficial to pre-train
a generative network with self-supervision i.e., without any labels, to create semantically-rich object

representations. These representations can be fine-tuned with low-complexity discriminators like a

linear SVM, or a single layer Perceptron [234], to achieve significantly better generalization in object
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recognition tasks compared to a non-pre-trained approach. This idea of using unsupervised generative

modeling to create representations that are useful in downstream tasks, or in general, is not new.

Perhaps the first network which actually managed to become deep did so by gradually pre-training

its intermediate layers before expanding them with more layers [105] (overcoming this way the

optimization problem of exploding/vanishing gradients occurring in deep-nets trained with simple

Stochastic Gradient Descent and not carefully chosen weight-initialization [84]). More recently a

variety of other complex down-stream tasks ranging from creating object part-segmentations [55] to

object localization in real-world scenes [299, 107] appear to benefit from similar distribution priors
that training with generative paradigms can bring in the optimization landscape (e.g., [147]) of a

discriminating task.

It is worth noting that the above approaches typically split the training into separate loss-functions

and corresponding training stages. However, there are more and more advocates suggesting that

training generative and discriminative models jointly [141, 320, 89] can be also effective. For instance,

the work of Gordon and Hernández-Lobato [89], develops a framework that allows semi-supervised

models (see [47] for a full treatment) to learn from labelled data (discriminatively) and unlabelled

data (generatively) simultaneously. A key benefit of their approach is that it can naturally account for

the uncertainty in the model’s predictive distribution, i.e., their discriminative model can provide

better confidence intervals for its predictions by tapping in its generative counterpart.

This last point is subtle and it relates to another emerging topic where building good generative

models can be useful: Explainable AI (XAI). In simple words, XAI is artificial intelligence (AI)

in which the results of the provided solutions can be understood by humans. It contrasts with the

concept of the “black box” in machine learning where oftentimes even its designers cannot explain

why an AI arrived at a specific decision [112]. Obviously, models that can reduce their uncertainty

on their predictions (as above in [89]) are safer to use and give better hints as for an interpretation.

In a similar vein another application of generative modeling that aids human-interpretation is that of

data visualization and exploration e.g., by using old-school manifold learning algorithms (e.g., PCA,

LLE, Isomap) and tools like T-SNE inside the underlying latent space of a generative model, one can

discover structure in the data (See Figure 3.8 for an example of this coming from our work [75]).

Finally, two last broad use cases where generative models can help machines to better model

human perception include their application in the problems of: a) content modification and b)

emulating creativity/imagination to do de novo content-creation, or Zero Shot Learning (ZSL) [296].

With the recent developments in image-based GANs, which drastically improved the quality of their

output generations [40, 124, 125, 59] we have seen a intense growth in works that utilize GANs and
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latent-spaces created with other generative models like Variational-Autoencoders [131], to modify

content that is provided as input. For instance, such works range from image-face modifications e.g.,

make a face look happier, younger, etc. [145, 223, 277], to generating novel shoe designs [71], or

predicting the melody of a song from its lyrics [314]. On the 3D/objects front the examples from our
works in Figure 2.3 and Figure 3.5 show how one can use semantic part labels with either of the

generative networks we introduced for instance to “add” armrests to a given chair. Finally, on the

creativity/imagination front, generative networks are starting to find new (very) creative usages like

in the works of CompoNet [242] or CGSP [95]. Here the introduced generative networks exploit the

factorization of common shapes into parts which are often shared across categories, to generalize

and “imagine” reconstructions (CompoNet) or 3D predictions from single images (CGSP) that go

beyond the “seen” manifold similar to a ZSL-setup. As we will see in the coming Chapters (5 & 6)

when we combined language-based signals with (object-centric) generative models the applications

of ZSL extend even more due to the inherent compositionality of human languages e.g., see how our

neural-listener generalizes robustly on novel categories of objects in Figure 5.7.

1.1.3 Focusing on object differences

Why modeling object differences in terms of shape, location, etc. ? Traditionally the learning

literature explores an object-centric understanding of our world by primarily focusing on the common-

alities among different objects [32, 85]; This is the case in clustering/compression-like schemes such

as AutoEncoders, but also to a lesser extent in deep-learning-based classifiers that aim at finding non-

linear decision boundaries that exploit the commonalities of same-class objects and embed them in a

space that keeps them in geometric proximity (while separating them from other classes) [121, 184].

The situation is more subtle and the focus starts shifting more clearly towards fine-grained differences

among objects in studies that involve fine-grained attribute classification [309, 310, 298, 305, 205].

In such studies typically the objects of a single class are being considered and the emphasis is placed

in learning fine-grained properties that characterize different sub-populations of the same class e.g.,

is a shoe a sandal or a slipper [309]?, or is a human smiling face or not [162]? Of course, it is easy

to see that there is a hidden recursion here. Single level classification problems/datasets like the

famous 1,000 class problem posed by ImageNet’s ILSVRC2012 challenge [68] considers the macro

characteristics of the 1,000 involved categories. Once we consider however only the items of a single

(high-level) class, e.g., shoes, we can repeat the classification problem at a finer level e.g., sandals vs.

slippers, and then once again, as in leather-sandals vs. plastic-sandals, and so on. The limit of this

approach ends with each individual item of a collection being considered an (atomic) class, giving
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rise to the “Instance-Level Classification Problem” (ILC). It is very interesting, how in the recent

years the ILC has been utilized at the core of most self-supervised (contrastive) algorithms that have

attained state-of-the-art results [294, 273, 269].

Contrastive context matters As the above discussion suggests when we are analyzing an object

the implicit or explicit objects we are comparing it with matter. Typical fine-grained classification

problems rely on an explicit manually curated catalogue of predefined labels that are extracted and

learned for every object of a given class. ILS drops the requirement of having a predefined label set,

but still considers implicitly the entire set of objects as the comparators. An interesting line of works,

starting perhaps with the seminal paper of “Relative Attributes” [205], uses a small set of predefined

attributes and compares fixed tuples of items in a relative manner: e.g, is ‘this’ shoe more sporty

than ‘that’? To explicitly define the contrastive-context is important as it can be used to provide a

linear ordering w.r.t. the underlying attribute (“sporty”). A generalization of this idea that further

lifts the necessity of having a predefined attribute-set is to use referential language to express the

signal (label) that distinguishes an objects in a given context. Natural referential language offers

an vast amount of ways to refer to an item in discriminating and reasonable manner (understood

by another human), giving rice to an open-ended label set. Two of our main works follow this

paradigm (Chapter 5, and Chapter 6). In a nutshell, in these works a human observer inspects a

specific indicated item (the “target” object) and contrasts it within a fixed set of other items (the

“distractors”). The observer is then asked to refer to the target in a way that makes it identifiable

by another human who is exposed to the same objects (“stimuli”). By carefully controlling the

communication/contrasting context we can induce comparisons and properties regarding the target at

different granularities, e.g., when we contrast an office chair with two (similar) office chairs, we can

extract nuanced visual differences such as the target’s leg relative thickness; but when we contrast

the same item with say two arm-chairs we can capture, say, if the target shares similar high-level

structural components like arms (e.g., see Figure C.6). Note, that to build in a scalable manner

contrasting contexts of different granularities for our work in Chapter 5, we relied on semantic-

similarity-based metrics among the compared objects, which were available from our earlier work

on language-free shape-based AutoEncoders (Chapter 2, Section 2.6.1).

Lastly, it is also worth noting that by controlling the context not only one can induce different

granularities over a single quality, like properties concerning an object’s shape – but can ultimately

impose comparisons involving different properties. An example of this is explored in our “natural

followup” work presented in Chapter 6. There, we ask an observer to write in language how a 3D
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object is identifiable among other objects of the same fine-grained-class e.g., an office-chair vs. other

office-chairs, but in the context of a real-world scene. Such a setup challenges the user to describe

properties such as the unique spatial relation of the object w.r.t. any object of the scene, or its

unique texture, shape, size, ..., or any other property that makes it identifiable by another human (see

Figure 6.6 of Chapter 6 for interesting cases of outlier-looking referential language).

1.1.4 Synergies and obstacles in relating 3D vision and language

Interplay between 3D vision and language The above discussion gives a high-level set of ideas

of how one can explicitly define the contrastive context between a set of 3D (visual) objects, and

how to use referential language as the means for extracting a differentiating signal. More broadly,

relating language and vision in a joint fashion has been among the main research foci of multi-modal

learning, with applications ranging from instruction-specifications for robots [267, 200, 140], to

image-based captioning [123, 193, 169, 312], and language-based content modification [81, 27]. One

fundamental difference between vision-based signals and linguistic descriptions of visual content,

concerns their specificity. Vision signals, modulo acquisition noise, tend to be precise and specific,

while common linguistic expressions describing them are almost always significantly underspecified.

For instance, one can generate practically an infinite amount of images portraying “a house”, or “a

small house by a river”. In applications where the goal is to associate language with vision, like in

image-captioning and related systems [123, 8], it is important to control this discrepancy and attain

the desideratum of generating language (or images) that reflect maximally the corresponding visual

(or linguistic) details. A neat technique for achieving this goal, was introduced independently and in

slightly different contexts in the works of Vedantam et al. [276] and Andreas et al. [15]. Their key idea

is simple and provides an elegant way for combining a generative network with a discriminative
network: first train a generative language model (“neural speaker”) by using standard losses and

procedures (e.g., Teacher-Forcing [288]). Then, train a separate bi-modal classifier (“neural listener”)

that can provide a likelihood for any given sentence as being related (describing-well) any given

image. Finally, merge the two systems: sample many linguistic expressions from the neural-speaker

but select/output the one that has a high-likelihood according to the neural-listener. This approach,

which improves the pragmatic association between a visual stimulus and its caption/description, was

separately applied in our work concerning the production of discriminative language for 3D shapes;

significantly improving the quality of the produced language (see Figure 5.6). Interestingly, in a

very recent and wildly popular work concerning the reverse problem of image-generation from text:

DALL-E [227]; per the authors statement the act of ranking the sampled images by an separately
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trained language-image discriminator (CLIP [224]) was absolutely critical for generating relevant

images. It appears thus that combining generative and discriminative networks is an emerging fruitful

practice, and I hypothesize that in the future more, very significant, findings will stem from it.

Aside, of the discrepancy in specificity described above, another natural quality that human

languages have that affects machine learning vision-language systems regards their subjectivity.

What Leo describes (or imagines) as a beautiful house by a lake, with all chance, will be drastically

different from what Panos envisions in his mind with that description. The topic of how different

agents use preexisting knowledge, or developed over the time of a discourse knowledge, specific to

their communication partner (in context), to reduce their uncertainty and subjectivity, and make more

effective and informed dialogues is broad [88, 99, 148, 133], fascinating but beyond the scope of this

thesis. However, it is worth mentioning that our recent work at the intersection of emotions and

linguistic explanations for visual art, ArtEmis [8], is the first visio-linguistic study that embraces the

subjectivity of the meaning of words (and emotional reactions) when creating neural-based speakers,

similar to those of Chapter 5.

1.1.5 Main research direction, contributions, and thesis outline

The fundamental research question behind this thesis concerns how to create semantically rich and

robust representations of 3D objects that improve machine-based object-centric reasoning, with (or

without) the inclusion of human referential language. Approximately half of the thesis is dedicated

to building novel, deep-learning-based models for shape synthesis and generation that are unaware

of any language and vary w.r.t. the richness of supervising signals they use. Ranging from self-

supervised generative networks to networks that explicitly input semantic object parts or (implicitly)

shape correspondences. The remaining half of the thesis puts referential language at the center of its

study. The strong connection with the first half is that the explored referential language concerns

(again) 3D objects and their properties, e.g., shape or spatial-location, and is discriminative. That

is, the used language acts as an auxiliary signal that we can, and do use, to discriminate among

generative object representations like those of the first half.

In summary:

1. Chapter 2 introduces AutoEncoders and (the first) Generative Adversarial Networks for 3D

point clouds of common objects, and establishes valuable and widely adopted evaluation

metrics for point cloud shape-synthesis at scale. These networks use no supervision and added

a new way of creating latent object representations in the 3D deep learning literature.
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Figure 1.1: Main scientific contributions, and structure of the thesis. The first half is dedicated to
generative modeling of object shapes, and the second half to discriminative modeling of shapes
or objects, with referential language.

2. Chapter 3 introduces a generative network that explicitly takes into account the part-based

composition of common 3D objects. By exploiting the supervision of semantic shape-parts,

such as the legs or back of a chair, it creates a factorized latent space where novel applications

for deep shape synthesis are possible. These include part-aware latent interpolations of objects,

and latent mixing-&-matching of their parts to create novel objects.

3. Chapter 4 introduces our third generative network for shapes which unlike the previous two

learns to reconstruct a shape based on how it is shape-wise different from a fixed “base” shape.

To create such differentiating input signal our approach relies on having (typically) dense e.g.,

point-to-point correspondences among the underlying shapes. The careful incorporation of
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this rich supervising signal improves the latent representations of Chapter 2 with regards to the

quality of making latent-based interpolations and analogies for 3D shapes.

4. Chapter 5 includes the first published study concerning the design of neural-based systems:

“listeners and speakers”, that use language that refers, explicitly and only, the shape of common

objects. Our resulting multi-modal networks exploit the shape-aware point cloud representa-

tions of Chapter 2 to improve their operational performance and among others to also make

the first neural-speakers and listeners that can (optionally) work directly with 3D point cloud

representations of the underlying objects. Interestingly, deep learning referential language for

shapes gives naturally rise to part-aware latent representations (similar to those of Chapter 3)

without however explicitly requiring extra labels for an object’s semantic parts.

5. The final Chapter 6, extends Chapter 5 in a challenging real-world scenario. It builds neural-

listeners that operate with 3D point clouds of objects, but when those latter are embedded inside
a 3D scene of real-world room/apartment. This setup forces our agents to learn properties

that go beyond an object’s shape, and pay attention also to, say, its texture, or relative spatial

location. As we show in this chapter, creating neural listeners that jointly analyze the objects

of a scene/context (via graph-neural-nets) is pivotal for learning to identify the referred object.

It is worth noting that to establish the studies of Chapters 5 and 6 we had to create two large
scale datasets (ShapeGlot & ReferIt3d) containing natural language made by thousands of humans

who solved the underlying cognitive tasks that we deep learned with our neural agents. These datasets,

along all the technical contributions presented in this thesis, and their corresponding implementations,

are publicly available, widely used, and have been the main subjects of peer-reviewed and published

research. For a pictorial overview of the thesis structure for the following chapters and our own

scientific contributions, please see Figure 1.1.

1.2 Overview of Deep Learning 3D Shapes and Objects

This section provides a quick review of the rapidly growing area of learning how to synthesize and

analyze collections of shapes of 3D objects with neural networks. It starts by highlighting some of

the obstacles found specifically when doing 3D deep-learning modeling, as opposed to applying

2D-based learning techniques; and continues by summarizing the main 3D representations and deep

learning tools explored in this thesis.
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1.2.1 Main bottlenecks behind deep shape synthesis & analysis

Deep 3D shape synthesis Encoding and reconstructing 3D shapes is a fundamental problem in

computer graphics, computer vision and related fields. Unlike images, which enjoy a canonical

representation, 3D shapes are encoded through a large variety of representations, such as point clouds,

triangle meshes and volumetric data, to name a few. Perhaps even more importantly, 3D shapes

may undergo a diverse set of transformations, ranging from rigid motions to complex non-rigid

and articulated deformations, that impact these representations. The representation issues have

become even more prominent in recent years with the advent of learning-based techniques, leading

to a number of solutions for learning directly on geometric 3D data [41]. This is challenging as

point clouds and meshes lack the regular grid structure exploited by convolutional architectures.

In particular, the problem of representations that are well adapted for both shape analysis and

especially shape synthesis remains difficult. For example, several methods for shape interpolation

have been proposed by designing deep neural networks, including AutoEncoder architectures, to

interpolate the latent vectors learned by such networks (e.g., [252] or those introduced by us in [5, 6]).

Unfortunately, it is not clear to what extent the latent vectors lie in a linear vector space, and thus

linear interpolation can sometimes lead to unrealistic intermediate shapes. Even more, typical

approaches (e.g., [252, 5, 6]) apply linear interpolation and other semantic-manipulations on vectors

that are derived from a holistic/unstructured latent space which does not offer strong guarantees on

the disentanglement of the latents, or an easy way to manipulate a subset of them [163]. In fact, this

last observation partially motivated our work on Chapter 3 which follows up our work on Chapter 2

(on unstructured latent spaces) and which builds an explicitly factorized latent space for shape-object

parts.

Deep 3D shape analysis At the same time, several recent techniques aim at applying deep learning

for shape analysis. One of the main challenges here is defining a meaningful notion on convolution,

while ensuring invariance to basic transformations, such as rotations and translations. Several

techniques have been proposed based on e.g., geometry images [253], volumetric [181, 282], point-

based [219] and multi-view approaches [220], as well as, more recently intrinsic techniques that

adapt convolution to curved surfaces [180, 36] (see also [41] for an overview), and even via toric

covers [179], among many others. Despite this tremendous progress in the last few years, defining a

shape representation that is compact, lends itself naturally to learning, while being invariant to the

desired class of transformations (e.g., rigid motions) and not limited to a particular topology, remains

a challenge.
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As we will also show with our work [111] in Chapter 4 one can deep learn matrices that encode

how 3D shapes relate to each other in the context of shape collection based on a priori known

pairwise correspondences e.g., dense-pointwise maps. Such a matrix representation naturally leads

to multiplicative algebra for shape interpolation with oftentimes improved results compared to the

classic linear-latent approach (see Figure 4.6). More importantly, it enables convolutional deep

learning due to its canonical structure. It is worth noticing however that this is not a free lunch:

acquiring correspondences among shapes of a collection can be particularly hard, especially for

non-isometric shapes such as those found in commonly used repositories like ShapeNet [46].

Deep analysis of objects inside 3D scenes The above paragraphs focus primarily on obstacles

one faces when trying to apply deep learning to 3D objects that are treated as independent entities,

e.g., deep learning a collection of 3D models in a manner similar to how most deep learning has been

previously applied on collections of images ([139], [68]). However, unlike typical imagery, one can

arrange 3D models inside an ambient space to emulate layouts of rooms, landscapes and generic

scenes [96, 297]. Even more, one can acquire rich 3D signals portraying scenes that contain objects

from the real-world [20, 63, 45]; and as of recently to attempt hard and novel deep learning tasks

with them [295, 63, 4, 54]. Deep learning such object-rich, compositional scenes, adds an extra level

of difficulty compared to analyzing objects independently and brings unique challenges. To narrow

the scope we will describe here the relevant problems that arose in consideration to our work [4]

which is fully explored in Chapter 6. Note that these problems are broad and applicable to a wide

range of tasks humans regularly solve when interacting with their 3D environment [297, 172].

Concretely, assume that one wants to describe properties of a 3D object in a scene to enable its

identification from a machine (the main task we teach machines in Chapter 6). The first sub-task that

the machine would naturally have to be able to do to achieve this goal would be to segment the scene

in its constituent objects [63, 218]. Such a task calls for joint analysis of the underlying objects of

the scene. Unfortunately, despite many excellent recent efforts ([222, 218, 217]) our community does

not yet have robust tools for solving this problem, and despite that graph-neural-networks [132, 285]

offer an elegant solution that in theory can learn joint compute over 3D objects (represented as nodes

of a graph); their operational performance is typically far from perfect [4, 54, 78, 209, 100]. Next,

even if one assumes that the object segmentation of a scene is given, the perceptual task of classifying

the fine-grained properties of the objects of a scene, is not solved [271, 306, 231, 316]. Treating the

objects as being independent i.e., without any joint analysis seems wasteful since there are strong

spatial-based correlations among the objects and their classes/properties. More importantly, one
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can embed 3D objects in a scene in a myriad ways and without using any canonical orientation,

or scale – exaggerating thus the transformation-related problems mentioned before (e.g., building

rotation-invariant representations). To make things worse the available 3D-scene-related data are

scarce, making data-hungry deep learning approaches, less successful and “plug-&-play”. Finally,

for problems involving an agent moving/navigating inside a scene while interacting with it, e.g., in

their attempt to make a referential description for a given object; the relative view between the agent

and the underlying object can have a strong effect to the output result (see Figure 6.5 for how it

affects descriptions of objects). Making deep-learning-based representations for sets of objects that

can reflect the (arbitrary) relative angle an external observer who is interacting with them might have,

is an open problem.

1.2.2 3D representations and neural blocks used in this thesis

Before I present the upcoming technical chapters, I wish to give a brief summary on the main 3D

representations and deep-learning tools we used in the research conducted in this thesis. This sub-

section will summarize such technical elements, without the ideas, execution-pipelines or motivation

behind their use, and its intent is to provide only an overview of the most basic prerequisites one has

to have to fully appreciate the upcoming chapters.

This thesis explores a wide range of 3D object representations In Chapter 2 we present our

research on 3D representation learning concering 3D point clouds of common man-made objects

(e.g., Figure 2.1), or to a lesser extent shapes of human bodies (e.g., Figures 2.7 and 2.6). Despite

having a low-memory footprint and being widely used, point clouds lack a canonical grid structure

and in the typical resolutions used in deep learning e.g., 2K-20K points per object, many thin and

delicate object-structures e.g., decorative elements of chairs, are hardly captured by them. These

facts make learning of fine-grained object properties, or high-frequency surface details, relatively

hard with this modality.

Next, in Chapter 3 we turn our attention to voxel-based encodings of common objects. Voxelized

representations come equipped with a regular 3D grid structure which enables us to use well-studied

convolutional operators for encoding and decoding the underlying objects. It is worth noting however,

that voxels have a high-memory footprint (cubic in cost) and in order to capture thin and delicate

object-structures, one has to operate in high resolutions (e.g., 1283 voxels) restricting our method’s

scalability compared to, say, a point-cloud-based alternative.

In Chapter 4 we use a different 3D object represenation to conduct our study. That of (triangular)
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meshes. Meshes have high fidelity and can ‘perfectly’ capture the high-frequency details of their

underlying shape. Meshes are also widely popular as they are regularly used by human designers,

resulting in an abundance of mesh-encoded CAD models. Nevertheless, similar to point clouds,

meshes also lack a canonical grid structure making convolutional deep learning with them less

straightforward.

Finally, in Chapter 5, we explore a combination of two object representations. That is we design

neural networks that operate with both 3D point clouds, and 2D renderings of their underlying

objects (see Figure 5.3). Using 2D image-renderings to portray 3D objects is not a new idea – in fact,

the first deep classification network for 3D shapes operated on multi-view 2D renderings of CAD

models ([293], circa 2015). Rendered images can portray high frequency content (limited though in

a single view-point), and can also be directly used by established convolutional networks [251, 101]

including networks pre-trained on large-scale data like ImageNet [68]. As we show with our study in

Chapter 5 Table 5.2, there are significant performance benefits in building neural-listeners that have

access to both 2D and 3D objects representations.

1.3 Overview of Tools Used for Deep Learning Language

In this section we give a short overview of some of the main deep-learning language oriented tools

that we use in the works of Chapters 5 and 6. Such neural modules (e.g., an “LSTM”) are fundamental

and have nowadays become mainstream. Since, in the coming chapters some of their details are

being opaque, and are treated as prior knowledge, for reasons of completeness we expose their basic

details and properties here. We also include some relevant but not used by us techniques e.g., using

feed-forward nets for language crunching to enrich the educational character of this section. We note

that parts of this section are based on the excellent review: “Deep Learning Based Text Classification:

A Comprehensive Review” [187] which provides a much broader exposition.

1.3.1 Feed-forward, recurrence and attention

Feed-forward neural networks for language processing Feed-forward networks are perhaps the

simplest deep-learning models for processing linguistic data. The crucial simplifying assumption

that enables feed-forward networks to operate on sequential linguistic data, is to altogether ignore

the order between words and treat the input text as a bag of words. Typically, these models embed

each word into a vector using a pre-trained word-embedding model like the Word2Vec [185] or

Glove [207]. The resulting word-representations are typically being further fine-tuned under a
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task-specific loss function, and are being aggregated with symmetric functions (symmetric in the

order of their inputs) such as the sum or average pooling. The output result of applying such an

aggregating function is finally passed through one or more feed-forward layers i.e., Multi-Layer

Perceptrons (MLPs); of which the output constitutes the text’s final representation. Surprisingly,

such low-complexity models have achieved high accuracy on many text-classification benchmarks

e.g., [114], and are considered a good baseline to access the extent to which word-order matters for

a given problem, or to be used in cases where larger language models are not practically feasible.

An intuitive extension of this syntax-unaware approach is to use a bag of n-grams as additional

features to capture local word order information [117]. This turns out to be very efficient in practice,

achieving comparable results to many methods that explicitly model the global word order [283].

Remark It is worth noting that the above neural-architecture ‘recipe’ was separately (re)-introduced

in the point cloud processing community around 2017 with works like PointNet [219] (see also

Chapter 2) and Deep Sets [317]. The equivalence between the two practices becomes apparent if

one treats a single 3D point as a single word which can be embedded in a high-dimensional feature

space (like the one provided by Word2Vec), and a point cloud as an order-less sentence, i.e., a set,

for which a feature can be extracted by applying, like above, a symmetric function to its constituent

members.

Modeling syntax recurrently Recurrent Neural Networks (RNNs) treat text more naturally than

feed-forward networks, viewing it as a sequence of words, and are intended to capture long-range

word dependencies and text structures. RNNs belong to a broad category of deep neural networks,

known as recursive neural networks. A recursive neural network applies the same weights recursively

over a structured input to produce a structured prediction or a vector representation over a variable-

size input. In the context of processing linguistic data the most common text structure assumed is that

of a linear chain, though in many applications more complex hierarchical structures, such as parse

trees of natural language sentences are used [255]. Unfortunately, vanilla RNN models tend to not

perform well, especially for longer sequences, and often underperform feed-forward neural networks.

A primary reason behind this is that their optimization becomes unstable as the sequence length

increases, suffering from vanishing or exploding gradients [206] [3]. Among the many variants of

RNNs, the Long Short-Term Memory (LSTM) is perhaps the most widely used architecture – also

used by us in our works of Chapters 5 and 6 to model referential sentences. LSTMs appear to attain

strong empirical performance in a variety of text-related tasks [187] and effectively mitigate the
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gradient problems suffered by vanilla RNNs. By design they incorporate an additional (unique to

LSTMs) memory cell that can learn to remember selectively values over arbitrary length intervals,

and three gates (input gate, output gate, forget gate) that overall regulate the flow of information in

and out of the LSTM. Their capacity to forget irrelevant parts of the input effectively reduces the

length of the input which in turn reduces the severity/instability of the underlying optimization. This

ability of a neural-network to pay more or less attention to specific parts of its inputs relates to our

next topic of “attention” which has drastically affected modern neural network designs [275].

Neural attention In the context of neural networks, neural attention is a technique that mimics the

cognitive attention of humans and its main purpose is to concentrate the learning process and resources

around the important parts of the input data while ignoring the rest. Neural attention has become an

increasingly popular concept and a useful tool in developing deep learning models for a variety of

language processing tasks [25, 171], visual tasks [190, 318], or both, in studies that involve learning

simultaneously across the two modalities [8, 302, 13]. In a nutshell, attention can be interpreted as a

vector of importance weights. These importance weights provide a ranking across a set of features,

which can be the input words, pixels, etc. or higher-level abstractions computed by a deeper layer of a

neural net. What is more important here, are the exact mechanics used to compute the weights and the

specific structural bias these mechanics embed in the underlying architecture. The two most common

basic techniques for creating attention values are the “dot-product” attention, which uses the dot

product between vectors to determine their importance weights, and “multi-head” attention, which

combines several attention mechanisms to direct the overall attention of a network or sub-network.

Given a set of vectors X = {x1, x2, . . . xN} corresponding to N input representations e.g., N words

of a sentence, and a vector y that we assume encodes some critical aspect of the underlying learning

task, one can use the dot-product attention to extract the importance-weight of each of the N inputs

w.r.t. y, by applying ai =� xT

i
⇥ y, and as typically done normalize the corresponding values to a

probability distribution by soft-maxing them: âi = exp(ai)PN
j exp(aj)

. To see an application of this in

the context of learning and attending to the important words of a referential sentence when solving

our shape identification task, please read Section 5.5 and see output examples of such a process

in Figure 5.4. Last, it is worth noting here that in many applications [275, 318] the above vector

y is in fact the original set X . The main idea behind such a case of “self-attention”, is to discover

the associations and correlations among the N inputs, which in turn can reveal the input values the

network should pay attention to when processing its k-th input.



Chapter 2

AutoEncoders and GANs for 3D Point
Cloud Objects

2.1 Overview

As we alluded to with our discussion in Section 1.1.1, three-dimensional geometric data portraying

common objects offer an excellent domain for studying representation learning and generative

modeling. In this chapter, we look at geometric data represented as point clouds. We introduce a deep

AutoEncoder (AE) network with state-of-the-art reconstruction quality and generalization ability.

The learned representations outperform existing methods on 3D recognition tasks and enable shape

editing via simple algebraic manipulations, such as semantic part editing, shape analogies and shape

interpolation, as well as shape completion. We perform a thorough study of different generative

models including GANs operating on the raw point clouds, significantly improved GANs trained in

the fixed latent space of our AEs, and Gaussian Mixture Models (GMMs). To quantitatively evaluate

generative models we introduce measures of sample fidelity and diversity based on matching between

sets of point clouds. Interestingly, our evaluation of generalization, fidelity and diversity reveals that

GMMs trained in the latent space of our AEs yield the best results overall.

2.2 Introduction

Three-dimensional (3D) representations of real-life objects are a core tool for vision, robotics,

medicine, augmented reality and virtual reality applications. Recent attempts to encode 3D geometry

for use in deep learning include view-based projections, volumetric grids and graphs. In this chapter,

17
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Figure 2.1: Reconstructions of unseen shapes from the test split of the input data. The leftmost image
of each pair shows the ground truth shape, the rightmost the shape produced after encoding and
decoding using a class-specific AE-EMD.

we focus on the representation of 3D point clouds. Point clouds are becoming increasingly popular

as a homogeneous, expressive and compact representation of surface-based geometry, with the ability

to represent geometric details while taking up little space. Point clouds are particularly amenable

to simple geometric operations and are a standard 3D acquisition format used by range-scanning

devices like LiDARs, the Kinect or iPhone’s face ID feature.

All the aforementioned encodings, while effective in their target tasks (e.g., rendering or ac-

quisition), are hard to manipulate directly in their raw form. For example, naı̈vely interpolating

between two cars in any of those representations does not yield a representation of an “intermediate”

car. Furthermore, these representations are not well suited for the design of generative models

via classical statistical methods. Using them to edit and design new objects involves the construc-

tion and manipulation of custom, object-specific parametric models, that link the semantics to the

representation. This process requires significant expertise and effort.

Deep learning brings the promise of a data-driven approach. In domains where data is plentiful,

deep learning tools have eliminated the need for hand-crafting features and models. Architectures

like AutoEncoders (AEs) [238, 131] and Generative Adversarial Networks (GANs) [87, 225, 48] are

successful at learning data representations and generating realistic samples from complex underlying

distributions. However, an issue with GAN-based generative pipelines is that training them is

notoriously hard and unstable [240]. In addition, and perhaps more importantly, there is no universally

accepted method for the evaluation of generative models.

In this chapter, we explore the use of deep architectures for learning representations and introduce

the first deep generative models for point clouds. At the time this work appeared, only a handful of

deep architectures tailored to 3D point clouds existed in the literature, and their focus was elsewhere:

they either aimed at classification and segmentation [219, 222], or used point clouds only as an

intermediate or output representation [118, 76]. Our specific contributions in this domain are:

• A new AE architecture for point clouds—inspired by recent architectures used for classification
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[219]—that can learn compact representations with (i) good reconstruction quality on unseen

samples; (ii) good classification quality via simple methods (SVM), outperforming the state

of the art [290]; (iii) the capacity for meaningful semantic operations, interpolations and

shape-completion.

• The first set of deep generative models for point clouds, able to synthesize point clouds with

(i) measurably high fidelity to, and (ii) good coverage of both the training and the held-out

data. One workflow that we propose is to first train an AE to learn a latent representation and

then train a generative model in that fixed latent space. The GANs trained in the latent space,

dubbed here l-GANs, are easier to train than raw GANs and achieve superior reconstruction

and better coverage of the data distribution. Multi-class GANs perform almost on par with

class-specific GANs when trained in the latent space.

• A study of various old and new point cloud metrics, in terms of their applicability (i) as

reconstruction objectives for learning good representations; (ii) for the evaluation of generated

samples. We find that a commonly used metric, Chamfer distance, fails to identify certain

pathological cases.

• Fidelity and coverage metrics for generative models, based on an optimal matching between

two different collections of point clouds. Our coverage metric can identify parts of the data

distribution that are completely missed by the generative model, something that diversity

metrics based on cardinality might fail to capture [21].

The rest of this chapter is organized as follows: Section 2.3 provides a quick overview of related

work. Section 2.4 outlines some background for the basic building blocks of our work. Section 2.5

introduces our metrics for the evaluation of generative point cloud pipelines. Section 2.6 discusses

our architectures for latent representation learning and generation. In Section 2.7, we perform

comprehensive experiments evaluating all of our models both quantitatively and qualitatively. Further

results can be found in the Appendix A. Last, the code for all our models is publicly available*.

2.3 Related Work

At the beginning of 3D deep learning At the time this work appeared (circa 2017), deep learning

architectures operating on 3D objects were significantly less than nowadays where thousands of

*http://github.com/optas/latent_3d_points

http://github.com/optas/latent_3d_points
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papers exist on this topic. The main approaches involved deep learning architectures for view-

based projections [258, 287, 118], volumetric grids [221, 293, 102], and graphs [42, 103, 66, 308].

A few works ([290], [286], [83], [39], [175], [325]) had explored generative and discriminative

representations for geometry. Moreover, those operated on different modalities, typically voxel grids

or view-based image projections. To the best of our knowledge, our work was the first to study

generative representations for 3D point clouds.

Training generative networks The work of Salimans et al. [240] gives some useful techniques

that help training a classic monolithic GAN. They propose feature matching as a method of reg-

ularizing the training process and ameliorating mode collapse issues. Variational autoencoders

(VAEs) [131] learn a representation compatible with a given prior distribution. Their training is

more stable than GANs, though the reported results seem to be of lower quality (i.e. slightly blurry

images [86]). VAEGANs [146] improve upon VAEs by training a VAE jointly with a GAN. DCGANs

and LAPGANs [225, 69] involve training of models of increasing level of detail, making training a

bit smoother. MDGANs [48] introduce regularizers in the GAN objective meant to prevent mode

collapse and improve the stability of training. WGANs [19] are a very elegant and intuitive solution

to the problem of vanishing gradients and mode collapse. They optimize an objective based on the

Wasserstein distance between the data and generator distributions, which is known to be more stable

and yield good results.

All of the GAN variants above improve the vanilla GAN is some way, but all are nonetheless

monolithic. Perhaps closer to our training workflow approach are the following results:

• The “plug and play” generative architecture [198] essentially uses some pretrained components,

which allows for substituting a core “condition” network that guides a pretrained generator.

This approach had achieved excellent results for image generation, though it involved a number

of complex steps (e.g. Langevin sampling). Our proposed AE+GAN workflow is much simpler

and seems to be a great fit for the point cloud modality.

• Adversarial autoencoders [176] use a GAN in the latent space of an AE. However they are still

trained jointly.

• GMMNs [158] are an alternative to GANs. They only train a generator and use a moment-

matching objective to bring the generator distribution close to the data distribution. One of the

proposed variants involves training in the latent space of an already training AE, similarly to

our approach, which significantly improves performance. They have enjoyed limited adoption,
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likely due to the moment matching objective’s computational complexity - quadratic on the

number of samples. This limits their applicability in high dimensions.

• Older work on sampling from autoencoders [230, 31, 30].

It is also worth noting that training Gaussian mixture models (GMM) in the latent space of an

autoencoder is closely related to VAEs. One documented issue with VAEs is over-regularization: the

regularization term associated with the prior, is often so strong that reconstruction quality suffers

[37, 256, 130, 73]. The literature contains methods that start only with a reconstruction penalty and

slowly increase the weight of the regularizer.

2.4 Technical Background

In this section we give the necessary background on point clouds, their metrics and the fundamental

building blocks that we will use in the rest of the chapter.

2.4.1 Point clouds

Definition A point cloud represents a geometric shape—typically its surface—as a set of 3D

locations in a Euclidean coordinate frame. In 3D, these locations are defined by their x, y, z

coordinates. Thus, the point cloud representation of an object or scene is a N ⇥ 3 matrix, where N is

the number of points, referred to as the point cloud resolution.

Point clouds as an input modality present a unique set of challenges when building a net-

work architecture. As an example, the convolution operator—now ubiquitous in image-processing

pipelines—requires the input signal to be defined on top of an underlying grid-like structure. Such

a structure is not available in raw point clouds, which renders them significantly more difficult to

encode than images or voxel grids. Recent classification work on point clouds (PointNet [219])

bypasses this issue by avoiding convolutions involving groups of points. Another related issue with

point clouds as a representation is that they are permutation invariant: any reordering of the rows of

the point cloud matrix yields a point cloud that represents the same shape. This property complicates

comparisons between two point sets which is needed to define a reconstruction loss. It also creates

the need for making the encoded feature permutation invariant.

Metrics Two permutation-invariant metrics for comparing unordered point sets have been proposed

in the literature [76]. On the one hand, the Earth Mover’s distance (EMD) [237] is the solution of
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a transportation problem which attempts to transform one set to the other. For two equally sized

subsets S1 ✓ R3, S2 ✓ R3, their EMD is defined by

dEMD(S1, S2) = min
�:S1!S2

X

x2S1

kx � �(x)k2

where � is a bijection. As a loss, EMD is differentiable almost everywhere. On the other hand, the

Chamfer (pseudo)-distance (CD) measures the squared distance between each point in one set to its

nearest neighbor in the other set:

dCH(S1, S2) =
X

x2S1

min
y2S2

kx � yk22 +
X

y2S2

min
x2S1

kx � yk22.

CD is differentiable and compared to EMD more efficient to compute.

2.4.2 Fundamental building blocks

AutoEncoders One of the main deep-learning components we use in this chapter is the AutoEn-

coder (AE, inset),

E D x̂x z

which is an architecture that learns to reproduce

its input. AEs can be especially useful, when

they contain a narrow bottleneck layer between

input and output. Upon successful training, this

layer provides a low-dimensional representation,

or code, for each data point. The Encoder (E) learns to compress a data point x into its latent

representation, z. The Decoder (D) can then produce a reconstruction x̂, of x, from its encoded

version z.

Generative Adversarial Networks In this chapter we also work with Generative Adversarial Net-

works (GANs), which are state-of-the-art generative models. The basic architecture (inset) is based on

a adversarial game between a generator (G) and a discriminator (D). The generator aims to synthesize

samples that look

G

DATA

D
x

z y

indistinguishable from real data (drawn from

x ⇠ pdata) by passing a randomly drawn sample

from a simple distribution z ⇠ pz through the

generator function. The discriminator is tasked
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Figure 2.2: Interpolating between different point clouds, using our latent space representation.
More examples for furniture and human-form objects [33] are demonstrated in Figures 2.4 and 2.6,
respectively.

with distinguishing synthesized from real sam-

ples.

The most commonly losses used for the dis-

criminator and generator networks are:

J (D)(✓(D),✓(G)) = �Ex⇠pdata log D(x) � Ez⇠pz log
⇣
1 � D

�
G(z)

�⌘
, (2.1)

J (G)(✓(D),✓(G)) = �Ez⇠pz log D(G(z)) , (2.2)

where ✓(D),✓(G) are the parameters for the discriminator and the generator network respectively. In

addition to the classical GAN formulation, we also use the improved Wasserstein GAN [94], which

has shown improved stability during training.

Gaussian Mixture Model A GMM is a probabilistic model for representing a population whose

distribution is assumed to be multimodal Gaussian, i.e. comprising of multiple subpopulations, where

each subpopulation follows a Gaussian distribution. Assuming the number of subpopulations is

known, the GMM parameters (means and variances of the Gaussians) can be learned from random

samples, using the Expectation-Maximization (EM) algorithm [67]. Once fitted, the GMM can be

used to sample novel synthetic samples.

2.5 Evaluation Metrics for 3D Generative Models

An important component of this work is the introduction of measures that enable comparisons

between two sets of points clouds A and B. These metrics are useful for assessing the degree to

which point clouds, synthesized or reconstructed, represent the same population as a held-out test set.

Our three measures are described below.
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JSD The Jensen-Shannon Divergence between marginal distributions defined in the Euclidean 3D

space. Assuming point cloud data that are axis-aligned and a canonical voxel grid in the ambient

space; one can measure the degree to which point clouds of A tend to occupy similar locations as

those of B. To that end, we count the number of points lying within each voxel across all point clouds

of A, and correspondingly for B and report the JSD between the obtained empirical distributions

(PA, PB):

JSD(PA k PB) =
1

2
D(PA k M) +

1

2
D(PB k M)

where M = 1
2(PA + PB) and D(· k ·) the KL-divergence between the two distributions [143].

Coverage For each point cloud in A we first find its closest neighbor in B. Coverage is measured

as the fraction of the point clouds in B that were matched to point clouds in A. Closeness can

be computed using either the CD or EMD point-set distance of Section 2.4, thus yielding two

different metrics, COV-CD and COV-EMD. A high coverage score indicates that most of B is

roughly represented within A.

Minimum Matching Distance (MMD) Coverage does not indicate exactly how well the covered

examples (point-clouds) are represented in set A; matched examples need not be close. We need

a way to measure the fidelity of A with respect to B. To this end, we match every point cloud of

B to the one in A with the minimum distance (MMD) and report the average of distances in the

matching. Either point-set distance can be used, yielding MMD-CD and MMD-EMD. Since MMD

relies directly on the distances of the matching, it correlates well with how faithful (with respect to

B) elements of A are.

Discussion The complementary nature of MMD and Coverage directly follows from their defini-

tions. The set of point clouds A captures all modes of B with good fidelity when MMD is small and

Coverage is large. JSD is fundamentally different. First, it evaluates the similarity between A and

B in coarser way, via marginal statistics. Second and contrary to the other two metrics, it requires

pre-aligned data, but is also computationally friendlier. We have found and show experimentally that

it correlates well with the MMD, which makes it an efficient alternative for e.g. model-selection,

where one needs to perform multiple comparisons between sets of point clouds.
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2.6 Models for Representation Learning and Generation of 3D Ob-
jects

In this section we describe the architectures of our neural networks starting from an autoencoder.

Next, we introduce a GAN that works directly with 3D point cloud data, as well as a decoupled

approach which first trains an AE and then trains a minimal GAN in the AE’s latent space. We

conclude with a similar but even simpler solution that relies on classical Gaussian mixtures models.

2.6.1 Learning representations of 3D point clouds

The input to our AE network is a point cloud with 2048 points (2048 ⇥ 3 matrix), representing

a 3D shape. The encoder architecture follows the design principle of [219]: 1-D convolutional

layers with kernel size 1 and an increasing number of features; this approach encodes every point

independently. A ”symmetric”, permutation-invariant function (e.g., a max pool) is placed after the

convolutions to produce a joint representation. In our implementation we use 5 1-D convolutional

layers, each followed by a ReLU [195] and a batch-normalization layer [113]. The output of the last

convolutional layer is passed to a feature-wise maximum to produce a k-dimensional vector which is

the basis for our latent space. Our decoder transforms the latent vector using 3 fully connected layers,

the first two having ReLUs, to produce a 2048 ⇥ 3 output. For a permutation invariant objective, we

explore both the EMD approximation and the CD (Section 2.4) as our structural losses; this yields

two distinct AE models, referred to as AE-EMD and AE-CD. To regularize the AEs we considered

various bottleneck sizes, the use of drop-out and on-the-fly augmentations by randomly-rotating the

point clouds. The effect of these choices is showcased in the Appendix (Section A.1) along with the

detailed training/architecture parameters. In the remainder of the chapter, unless otherwise stated, we

use an AE with a 128-dimensional bottleneck layer.

2.6.2 Generative models for point clouds

Raw point cloud GAN (r-GAN) Our first GAN operates on the raw 2048 ⇥ 3 point set input.

The architecture of the discriminator is identical to the AE (modulo the filter-sizes and number of

neurons), without any batch-norm and with leaky ReLUs [173] instead or ReLUs. The output of the

last fully connected layer is fed into a sigmoid neuron. The generator takes as input a Gaussian noise

vector and maps it to a 2048 ⇥ 3 output via 5 FC-ReLU layers.
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Figure 2.3: Editing parts in point clouds using simple additive algebra on the AE latent space. Left
to right: tuning the appearance of cars towards the shape of convertibles, adding armrests to chairs,
removing handle from mug. Note that the height of chairs with armrests is on average 13% shorter
than of chairs without one; which is reflected also in these results.

Latent-space GAN (l-GAN) For our l-GAN, instead of operating on the raw point cloud input,

we pass the data through a pre-trained autoencoder, which is trained separately for each object class

with the EMD (or CD) loss function. Both the generator and the discriminator of the l-GAN then

operate on the bottleneck variables of the AE. Once the training of GAN is over, we convert a code

learned by the generator into a point cloud by using the AE’s decoder. Our chosen architecture for

the l-GAN, which was used throughout our experiments, is significantly simpler than the one of the

r-GAN. Specifically, an MLP generator of a single hidden layer coupled with an MLP discriminator

of two hidden layers suffice to produce measurably good and realistic results.

Gaussian mixture model In addition to the l-GANs, we also fit a family of Gaussian Mixture

Models (GMMs) on the latent spaces learned by our AEs. We experimented with various numbers of

Gaussian components and diagonal or full covariance matrices. The GMMs can be turned into point

cloud generators by first sampling the fitted distribution and then using the AE’s decoder, similarly

to the l-GANs.

2.7 Experimental Evaluation

In this section we experimentally establish the validity of our proposed evaluation metrics and

highlight the merits of the AE-representation (Section 2.7.1) and the generative models (Section 2.7.4).

In all experiments in the thesis, we use shapes from the ShapeNet repository [46], that are axis aligned

and centered into the unit sphere. To convert these shapes (meshes) to point clouds we uniformly

sample their faces in proportion to their area. Unless otherwise stated, we train models with point

clouds from a single object class and work with train/validation/test sets of an 85%-5%-10% split.

When reporting JSD measurements we use a 283 regular voxel grid to compute the statistics.
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2.7.1 Representational power of the AE

We begin with demonstrating the merits of the proposed AE. First we report its generalization ability

as measured using the MMD-CD and MMD-EMD metrics. Next, we utilize its latent codes to do

semantically meaningful operations. Finally, we use the latent representation to train SVM classifiers

and report the attained classification scores.

Generalization ability Our AEs are able to reconstruct unseen shapes with quality almost as good

as that of the shapes that were used for training. In Fig. 2.1 we use our AEs to encode unseen

samples from the test split (the left of each pair of images) and then decode them and compare

them visually to the input (the right image). To support our visuals quantitatively, in Table 2.1 we

report the MMD-CD and MMD-EMD between reconstructed point clouds and their corresponding

ground-truth in the train and test datasets of the chair object class. The generalization gap under our

metrics is small; to give a sense of scale for our reported numbers, note that the MMD is 0.0003 and

0.033 under the CD and EMD respectively between two versions of the test set that only differ by the

randomness introduced in the point cloud sampling. Similar conclusions regarding the generalization

ability of the AE can be made based on the reconstruction loss attained for each dataset (train or test)

which is shown in Fig. A.1 of the Appendix A.

AE MMD-CD MMD-EMD

loss Train Test Train Test
CD 0.0004 0.0012 0.068 0.075

EMD 0.0005 0.0013 0.042 0.052

Table 2.1: Generalization of AEs as captured by MMD. Measurements for reconstructions on the
training and test splits for an AE trained with either the CD or EMD loss and data of the chair class;
Note how the MMD favors the AE that was trained with the same loss as the one used by the MMD
to make the matching.

Latent space and linearity Another argument against under/over-fitting can be made by showing

that the learned representation is amenable to intuitive and semantically rich operations. As it is shown

in several recent works, well trained neural-nets learn a latent representation where additive linear

algebra works to that purpose [186, 265]. By linearly interpolating between the latent representations

of two shapes and decoding the result we obtain intermediate variants between the two shapes. This

produces a “morph-like” sequence with the two shapes at its end points as shown in Fig. 2.2 and

Fig. 2.4). Our latent representation is powerful enough to support removing and merging shape parts,
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Figure 2.4: Interpolating between different point clouds (left and right-most of each row), using our
latent space representation. Note the interpolation between structurally and topologically different
shapes. Note: for all our illustrations that portray point clouds we use the Mitsuba renderer [116].

which enables morphing between shapes of significantly different appearance. Our cross-category

latent representation enables morphing between shapes of different classes, cfg. the third row of

Fig. 2.4 for an interpolation between a bench and a sofa.

Editing shape parts In Figure 2.3 we alter the input geometry (left) by adding, in latent space,

the mean vector of geometries with a certain characteristic (e.g., convertible cars or cups without

handles). For such a shape editing application, we use the embedding we learned with the AE-EMD

trained across all 55 object classes, not separately per-category. This showcases its ability to encode

features for different shapes, and enables interesting applications involving different kinds of shapes.

Specifically, we use the shape annotations of Yi et al.[307] as guidance to modify shapes. As an

example, assume that a given object category (e.g., chairs) can be further subdivided into two sub-

categories A and B: every object A 2 A possesses a certain structural property (e.g., has armrests,

is four-legged, etc.) and objects B 2 B do not. Using our latent representation we can model this

structural difference between the two sub-categories by the difference between their average latent

representations xB � xA, where xA =
P
A2A

xA, xB =
P
B2B

xB . Then, given an object A 2 A, we

can change its property by transforming its latent representation: xA0 = xA + xB � xA, and decode

xA0 to obtain A0 2 B.
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Figure 2.5: Shape analogies using our learned representation. Shape B0 relates to B in the same way
that shape A0 relates to A.

Shape analogies Another demonstration of the Euclidean nature of the latent space is demonstrated

by finding “analogous” shapes by a combination of linear manipulations and Euclidean nearest-

neighbor searching. Concretely, we find the difference vector between A and A0, we add it to shape

B and search in the latent space for the nearest-neighbor of that result, which yields shape B0. We

demonstrate the finding in Fig. 2.5 with images taken from the meshes used to derive the underlying

point clouds to help the visualization. Finding shape analogies has been of interest recently in the

geometry processing community [239, 109].

A B C D E ours EMD ours CD
MN10 79.8 79.9 - 80.5 91.0 95.4 95.4
MN40 68.2 75.5 74.4 75.5 83.3 84.0 84.5

Table 2.2: Classification performance (in %) on ModelNet10/40. Comparing to A: SPH [127],
B: LFD [49], C: T-L-Net [83], D: VConv-DAE [245], E: 3D-GAN [290].

Classification Our final evaluation for the AE’s design and efficacy is done by using the learned

latent codes as features for classification. For this experiment to be meaningful, we train an AE

across all different shape categories: using 57,000 models from 55 categories of man-made objects.

Exclusively for this experiment, we use a bottleneck of 512 dimensions and apply random rotations

to the input point clouds along the gravity axis. To obtain features for an input 3D shape, we feed its

point cloud into the AE and extract the bottleneck activation vector. This vector is then classified

by a linear SVM trained on the de-facto 3D classification benchmark of ModelNet [293]. Table 2.2

shows comparative results. Remarkably, in the ModelNet10 dataset, which includes classes (chairs,
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beds etc.) that are populous in ShapeNet, our simple AE significantly outperforms the state of the

art [290] which instead uses several layers of a GAN to derive a 7168-long feature. In Fig. A.2

of the Appendix we include the confusion matrix of the classifier evaluated on our latent codes

on ModelNet40 – the confusion happens between particularly similar geometries: a dresser vs. a

nightstand or a flower-pot vs. a plant. The nuanced details that distinguish these objects may be hard

to learn without stronger supervision.

Figure 2.6: Interpolating between different point clouds from the test split (left and right-most of
each row) of the D-FAUST dataset of [33]. These linear interpolations have captured some of the
dynamics of the corresponding motions: ‘chicken-wings’ (first row), ‘shake shoulders’ (second row)
and ‘jumping jacks’ (third row). Compare to Fig. 2.7 that contains ground-truth point clouds in the
same time interval.

2.7.2 Autoencoding human forms

In addition to ShapeNet core which contains man-made only objects, we have experimented with the

D-FAUST dataset of [33] that contains meshes of human subjects. Specifically, D-FAUST contains

40K scanned meshes of 10 human subjects performing a variety of motions. Each human performs

a set of (maximally) 14 motions, each captured by a temporal sequence of ⇠300 meshes. For our

purposes, we use a random subset of 80 (out of the 300) meshes for each human/motion and extract

from each mesh a point cloud with 4096 points. Our resulting dataset contains a total of 10240 point

clouds and we use a train-test-val split of [70%, 20%, 10%] - while enforcing that every split contains

all human/motion combinations. We use this data to train and evaluate an AE-EMD that is identical

to the single-class AE presented in the thesis, with the only difference being the number of neurons
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Figure 2.7: Reconstructions of unseen shapes from the test split extracted from the D-FAUST dataset
of [33] with an AE-EMD decoding point clouds with 4096 points. In each row the poses depict a
motion (left-to-right) as it progress in time.
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of the last layer (4096 ⇥ 3 instead of 2048 ⇥ 3).

We demonstrate reconstruction and interpolation results in Figs. 2.7 and 2.6. For a given human

subject and a specific motion we pick at random two meshes corresponding to time points t0, t1

(with t1 > t0) and show their reconstructions along with the ground truth in Fig. 2.7 (left-most and

right-most of each row). In the same figure we also plot the reconstructions of two random meshes

captured in (t0, t1) (middle-two of each row). In Fig. 2.6, instead of encoding/decoding the ground

truth test data, we show decoded linear interpolations between the meshes of t0, t1.

Figure 2.8: Point cloud completions of a network trained with partial and complete (input/output)
point clouds and the EMD loss. Each triplet shows the partial input from the test split (left-most),
followed by the network’s output (middle) and the complete ground-truth (right-most).

2.7.3 Shape completions

An important application that our AE architecture can be used for is that of completing point clouds

that contain limited information of the underlying geometry. Typical range scans acquired for an

object in real-time can often miss entire regions of the object due to the existence of self-occlusions

and the lack of adequate (or “dense”) view-point registrations. This fact makes any sensible solution

to this problem of high practical importance. To address it here, we resort in a significantly different

dataset than the ones used in the rest of this chapter. Namely, we utilize the dataset of [64] that

contains pairs of complete (intact) 3D CAD models and partial versions of them. Specifically, for

each object of ShapeNet (core) it contains six partial point clouds created by the aggregation of

frames taken over a limited set of view-points in a virtual trajectory established around the object.

Given this data, we first fix the dimensionality of the partial point clouds to be 2048 points for each

one by randomly sub-sampling them. Second, we apply uniform-in-area sampling to each complete

CAD model to extract from it 4096 points to represent a “complete” ground-truth datum. All the

resulting point clouds are centered in the unit-sphere and (within a class) the partial and complete

point clouds are co-aligned. Last, we train class-specific neural-nets with Chair, Table and Airplane

data and a train/val/test split of [80%, 5%, 15%].
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Architecture The high level design of the architecture we use for shape-completions is identical to

the AE, i.e. independent-convolutions followed by FCs, trained under a structural loss (CD or EMD).

However, essential parts of this network are different: depth, bottleneck size (controlling compression

ratio) and the crucial differentiation between the input and the output data. Technically, the resulting

architecture is an Abstractor-Predictor (AP) and is comprised by three layers of independent per-point

convolutions, with filter sizes of [64, 128, 1024], followed by a max-pool, which is followed by an

FC-ReLU (1024 neurons) and a final FC layer (4096⇥ 3 neurons). We don’t use batch-normalization

between any layer and train each class-specific AP for a maximum of 100 epochs, with Adam, initial

learning rate of 0.0005 and a batch size of 50. We use the minimal per the validation split model

(epoch) for evaluating our models with the test data.

Evaluation We use the specialized point cloud completion metrics introduced in [262]. That is

a) the accuracy: which is the fraction of the predicted points that are within a given radius (⇢)

from any point in the ground truth point cloud and b) the coverage: which is the fraction of the

ground-truth points that are within ⇢ from any predicted point. In Table 2.3 we report these metrics

(with a ⇢ = 0.02 similarly to [262]) for class-specific networks that were trained with the EMD

and CD losses respectively. We observe that the CD loss gives rise to more accurate but also less

complete outputs, compared to the EMD. This highlights again the greedy nature of CD – since it

does not take into account the matching between input/output, it can get generate completions that are

more concentrated around the (incomplete) input point cloud. Figure A.6 shows the corresponding

completions of those presented in Figure 2.8, but with a network trained under the CD loss.

Class Airplane Chair Table
Test-size 4.5K 6K 6K
Acc-CD 96.9 86.5 87.6

Acc-EMD 94.7 77.1 78.4
Cov-CD 96.6 77.5 75.2

Cov-EMD 96.8 82.6 83.0

Table 2.3: Performance of point cloud completions on ShapeNet test data. Comparison between
Abstractor-Predictors trained under the CD or EMD losses, on mean Accuracy and Coverage, across
each class. The size of each test-split is depicted in the first row.
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Figure 2.9: Synthetic point clouds generated by samples produced with l-GAN (top) and 32-
component GMM (bottom), both trained on the latent space of an AE using the EMD loss.

Figure 2.10: Synthetic results produced by the r-GAN. From left to right: airplanes, car, chairs, sofa.

2.7.4 Evaluating the generative models

Having established the quality of our AE, we now demonstrate the merits and shortcomings of our

generative pipelines and establish one more successful application for the AE’s learned representation.

First, we conduct a comparison between our generative models followed by a comparison between

our latent GMM generator and the state-of-the-art 3D voxel generator. Next, we describe how

Chamfer distance can yield misleading results in certain pathological cases that r-GANs tends

to produce. Finally, we show the benefit of working with a pre-trained latent representation in

multi-class generators.

Comparison of our different generative models For this study, we train five generators with

point clouds of the chair category. First, we establish two AEs trained with the CD or EMD loss

respectively—referred to as AE-CD and AE-EMD and train an l-GAN in each latent space with the

non-saturating loss introduced by Goodfellow et al. [87]. In the space learned by the AE-EMD we

train two additional models: an identical (architecture-wise) l-GAN that utilizes the Wasserstein

objective with gradient-penalty [94] and a family of GMMs with a different number of means and

structures of covariances. We also train an r-GAN directly on the point cloud data.

Fig. 2.11 shows the JSD (left) and the MMD and Coverage (right) between the produced synthetic

datasets and the held-out test data for the GAN-based models, as training proceeds. Note that the

r-GAN struggles to provide good coverage and good fidelity of the test set; which alludes to the

well-established fact that end-to-end GANs are generally difficult to train. The l-GAN (AE-CD)
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Figure 2.11: Learning behavior of the GANs, in terms of coverage / fidelity to the ground truth test
dataset. Left – the JSD distance between the ground truth test set and synthetic datasets generated
by the GANs at various epochs of training. Right – EMD based MMD/Coverage: curve markers
indicate epochs 1, 10, 100, 200, 400, 1000, 1500, 2000, with larger symbols denoting later epochs.

performs better in terms of fidelity with much less training, but its coverage remains low. Switching

to an EMD-based AE for the representation and otherwise using the same latent GAN architecture

(l-GAN, AE-EMD), yields a dramatic improvement in coverage and fidelity. Both l-GANs though

suffer from the known issue of mode collapse: half-way through training, first coverage starts

dropping with fidelity still at good levels, which implies that they are overfitting a small subset of the

data. Later on, this is followed by a more catastrophic collapse, with coverage dropping as low as

0.5%. Switching to a latent WGAN largely eliminates this collapse, as expected.

In Table 2.4, we report measurements for all generators based on the epoch (or underlying GMM

parameters) that has minimal JSD between the generated samples and the validation set. To reduce

the sampling bias of these measurements each generator produces a set of synthetic samples that is

3⇥ the population of the comparative set (test or validation) and repeat the process 3 times and report

the averages. The GMM selected by this process has 32 Gaussians and a full covariance. As shown

in Fig. A.4, GMMs with full covariances perform much better than those that have diagonal structure

and ⇠20 Gaussians suffice for good results. Last, the first row of Table 2.4 shows a baseline model

that memorizes a random subset of the training data of the same size as the other generated sets.

Discussion. The results of Table 2.4 agree with the trends shown in Fig. 2.11 and further verify

the superiority of the latent-based approaches and the relative gains of using an AE-EMD vs. an

AE-CD. Moreover they demonstrate that a simple GMM can achieve results of comparable quality to

a latent WGAN. Lastly, it is worth noting how the GMM has achieved similar fidelity as that of the

perfect/memorized chairs and with almost as good coverage. Additional results in Appendix A show

the same performance-based conclusions when our metrics are evaluated on the train split.
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Model Type JSD MMD-CD MMD-EMD COV-EMD COV-CD
A MEM 0.017 0.0018 0.063 78.6 79.4
B RAW 0.176 0.0020 0.123 19.0 52.3
C CD 0.048 0.0020 0.079 32.2 59.4
D EMD 0.030 0.0023 0.069 57.1 59.3
E EMD 0.022 0.0019 0.066 66.9 67.6
F GMM 0.020 0.0018 0.065 67.4 68.9

Table 2.4: Evaluating 5 generators on the test split of the chair dataset on epochs/models selected via
minimal JSD on the validation-split. We report: A: sampling-based memorization baseline, B: r-GAN,
C: l-GAN (AE-CD), D: l-GAN (AE-EMD) , E: l-WGAN (AE-EMD), F: GMM (AE-EMD).

Chamfer’s blindness, r-GAN’s hedging An interesting observation regarding r-GAN can be

made in Table 2.4. The JSD and the EMD based metrics strongly favor the latent-approaches, while

the Chamfer-based ones are much less discriminative. To decipher this discrepancy we did an

extensive qualitative inspection of the r-GAN samples and found many cases of point clouds that

were over-populated in locations, that on average, most chairs have mass. This hedging of the r-GAN

is particularly hard for Chamfer to penalize since one of its two summands can become significantly

small and the other can be only moderately big by the presence of a few sparsely placed points in the

non-populated locations. Figure 2.12 highlights this point. For a ground-truth point cloud we retrieve

its nearest neighbor, under the CD, in synthetically generated sets produced by the r-GAN and the

l-GAN and in-image numbers report their CD and EMD distances from it. Notice how the CD fails

to distinguish the inferiority of the r-GAN samples while the EMD establishes it. This blindness

of the CD metric to only partially good matches, has the additional side-effect that the CD-based

coverage is consistently bigger than the EMD-based one.

Class Fidelity Coverage

A Ours A Ours
car 0.059 0.041 28.6 65.3
rifle 0.051 0.045 69.0 74.8
sofa 0.077 0.055 52.5 66.6
table 0.103 0.061 18.3 71.1

Table 2.5: Fidelity (MMD-EMD) and coverage (COV-EMD) comparison between A: [290] and our
GMM generative model on the test split of each class. Note that Wu et al. uses all models of each
class for training contrary to our generators.
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Figure 2.12: The CD distance is less faithful than EMD to visual quality of synthetic results; here, it
favors r-GAN results, due to the overly high density of points in the seat part of the synthesized point
sets.

Figure 2.13: Synthetic point clouds produced with l-WGANs trained in the latent space of an
AE-EMD trained on a multi-class dataset.

Comparisons to voxel generators Generative models for other 3D modalities, like voxels, were

also recently proposed [290]. One interesting question is: if point clouds are our target modality,

does it make sense to use voxel generators and then convert to point clouds? This experiment answers

this question in the negative. First, we make a comparison using a latent GMM which is trained

in conjunction with an AE-EMD. Secondly, we build an AE which operates with voxels and fit a

GMM in the corresponding latent space. In both cases, we use 32 Gaussians and a full covariance

matrix for these GMMs. To use our point-based metrics, we convert the output of [290] and our

voxel-based GMM into meshes which we sample to generate point clouds. To do this conversion

we use the marching-cubes [152] algorithm with an isovalue of 0.1 for the former method (per

authors’ suggestions) and 0.5 for our voxel-AE. We also constrain each mesh to be a single connected
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component as the vast majority of ground-truth data are.

Table 2.5 reveals how our point-based GMM trained with a class specific AE-EMD fares against

[290] on four object classes for which the authors have made their (also class-specific) models

publicly† available. Our approach is consistently better, with a coverage boost that can be as large as

4⇥ and an almost 2⇥ improved fidelity (case of table). This is despite the fact that [290] uses all

models of each class for training, contrary to our generators that never had access to the underlying

test split.

Table 2.6 reveals the performance achieved by pre-training a voxel-based AE for the chair class.

Observe how by working with a voxel-based latent space, aside of making comparisons more direct

to [290] (e.g., we both convert output voxels to meshes), we also establish significant gains in terms

of coverage and fidelity.

MMD-CD MMD-EMD COV-CD COV-EMD
A 0.0046 0.091 19.6 22.4

Ours 0.0025 0.072 60.3 64.8

Table 2.6: MMD and Coverage metrics evaluated on the output of voxel-based methods at resolution
643, matched against the chair test set, using the same protocol as in Table2.4. Comparing: A: “raw”
643-voxel GAN [290] and a latent 643-voxel GMM.

Qualitative results In Fig. 2.9, we show some synthetic results produced by our l-GANs and the

32-component GMM. We notice high quality results from either model. The shapes corresponding to

the 32 means of the Gaussian components can be found in the Fig. A.5, as well as results using the

r-GAN (Fig.2.10).

airplane car chair sofa table average multi-class
Tr 0.0004 0.0006 0.0015 0.0011 0.0013 0.0010 0.0011
Te 0.0006 0.0007 0.0019 0.0014 0.0017 0.0013 0.0014

Table 2.7: MMD-CD measurements for l-WGANs trained on the latent spaces of dedicated (left
5 columns) and multi-class EMD-AEs (right column). Also shown is the weighted average of the
per-class values, using the number of train (Tr) resp. test (Te) examples of each class as weights. All
l-WGANs use the model parameter resulted by 2000 epochs of training.

†http://github.com/zck119/3dgan-release

http://github.com/zck119/3dgan-release
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Multi-class generators Finally, we compare between class specific and class agnostic generators.

In Table 2.7 we report the MMD-CD for l-WGANs trained in the space of either a dedicated (per-

class) AE-EMD or with an AE-EMD trained with all listed object classes. It turns out that the

l-WGANs produce perform similar results in either space. Qualitative comparison (Fig. 2.13) also

reveals that by using a multi-class AE-EMD we do not sacrifice much in terms of visual quality

compared to the dedicated AEs.

Figure 2.14: The AEs might fail to reconstruct uncommon geometries or might miss high-frequency
details: first four images - left of each pair is the input, right the reconstruction. The r-GAN may
synthesize noisy/unrealistic results, cf. a car (right most image).

Figure 2.15: Our completion network might fail to preserve some of the style information in the
partial point cloud, even though a reasonable shape is produced.

2.7.5 Limitations

Figure 2.14 shows some failure cases of our models. Chairs with rare geometries (left two images)

are sometimes not faithfully decoded. Additionally, the AEs may miss high-frequency geometric

details, e.g. a hole in the back of a chair (middle), thus altering the style of the input shape. Finally,

the r-GAN often struggles to create realistic-looking shapes (right) – while the r-GAN chairs are

easily visually recognizable, it has a harder time on cars. A limitation of our shape-completion

pipeline regards the style of the partial shape, which might not be well preserved in the completed

point cloud (see Fig. 2.15 for an example).
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2.8 Conclusion

In this chapter we presented a novel set of architectures for 3D point cloud representation learning

and generation. Our results show good generalization to unseen data and our representations encode

meaningful semantics. In particular our generative models are able to produce faithful samples and

cover most of the ground truth distribution. Interestingly, our extensive experiments show that the

best generative model for point clouds is a GMM trained in the fixed latent space of an AE. While

this might not be a universal result, it suggests that simple classic tools should not be dismissed.

A thorough investigation on the conditions under which simple latent GMMs are as powerful as

adversarially trained models would be of significant interest for future work. It is also worth pointing

out that the materials of this chapter ([5, 6]) have been used and cited numerous times, including

several works that attempt to improve 3D point cloud deep-learning based generative networs (e.g.,

[321, 157, 56, 51, 260, 281]). While most of these approaches improve certain aspects of this

problem, overall creating realistically-looking point cloud models covering all variations existing in

an underlying collection i.e., without suffering mode-collapse, has not been attained for objects of

rich collections like ShapeNet. Thin structures, such as decorative elements, fine-grained surface

details and overal rare shapes, are still hard to synthetically reproduce with high fidelity – keeping

the 3D generation problem highly relevant and active.



Chapter 3

Building a Part-aware Latent Space for
3D Shapes

3.1 Overview

As discussed in Chapter 1 one of the main properties of objects is their part-based compositional

structure. While the methods presented in Chapter 2 are very effective in creating meaningful latent

object representations, they treat objects holistically, without any explicit modeling of their parts.

Similarly, the results in Figure 2.3, show how one can use part-labels of shapes and simple linear

algebra to edit a shape (e.g., add an armrest) by using a part-unaware latent space; and while they are

promising, they are very from ideal. In this section, we put the part-based structure of objects in
the front-stage of our research focus. Specifically, we develop a novel neural network architecture,

termed Decomposer-Composer, that learns part-based, structure-aware shape modeling for objects

represented as 3D voxel grids. Our method utilizes an AutoEncoder-based pipeline, and produces

a factorized latent space, where the semantic structure of the shape collection translates into a

data-dependent sub-space factorization, and where shape composition and decomposition become

simple linear operations on the embedding coordinates. We also propose to model shape assembly

using an explicit learned part deformation module, which utilizes a 3D spatial transformer network

to perform an in-network volumetric grid deformation, and which allows us to train the whole system

end-to-end. As we show in Section 3.4, the resulting network allows us to perform part-level shape

manipulation, unattainable by previously existing approaches, including those presented in Chapter 2.

A high-level visual summary of the proposed key idea is shown in Figure 3.1. The materials of this

section are based on our paper Composite Shape Modeling via Latent Space Factorization [75].

41
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Figure 3.1: Given unlabeled shapes, the Decomposer maps them into a factorized latent space. The
Composer can either reconstruct the shapes with semantic part labels, or create novel shapes, for
instance, by exchanging chair legs.

3.2 Related Work

Learning-based shape synthesis Learning-based methods have been used for automatic synthesis

of shapes from complex real-world domains; In a seminal work [119], Kalogerakis et al. used

a probabilistic model, which learned both continuous geometric features and discrete component

structure, for component-based shape synthesis and novel shape generation. The development

of deep neural networks enabled learning high-dimensional features more easily; 3DGAN [290]

uses 3D decoders and a GAN to generate voxelized shapes. Apart from generating shapes using a

latent representation, some methods generate shapes from a latent representation with structure. S2-

GAN [284] generate the shape and texture for a 3D scene in a 2-stage manner. GRASS [156] generate
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Figure 3.2: Our instantiation of a Decomposer-Composer architecture which enables explicit part-
aware (deep-learning-based) modeling of shapes.

shapes in two stages: first, by generating orientated bounding boxes, and then a detailed geometry

within those bounding boxes. Nash and Williams [196] use use point cloud shape representation and

a VAE to learn a probabilistic latent space of shapes; however, they require all training data to be in

point-to-point correspondence. In a related work [280], Wang et al. introduced a 3D GAN-based

generative model for 3D shapes, which produced segmented and labeled into parts shapes. Unlike

the latter approach, our network does not use predefined subspaces for part embedding, but learns to

project the latent code of the entire shape to the subspaces corresponding to codes of different parts.

In concurrent efforts, several deep architectures for part based shape synthesis were proposed [242,

155, 292, 191]. Schor et al [242] utilized point-base shape representation, while operating on input

models with known per-point parts labels. Li et al. [155] and [292] proposed two generative networks

for part-based shape synthesis, operating on labeled voxelized shapes. Mo et al. [191] introduced a

hierarchical graph network for learning structure-aware shape generation.

Spatial transformer networks Spatial transformer networks (STN) [115] allow to easily incor-

porate deformations into a learning pipeline. Kurenkov et al [144] retrieve a 3D model from one

RGB image and generate a deformation field to modify it. Kanazawa et al [120] model articulated or

soft objects with a template shape and deformations. Lin et al [159] use STNs iteratively, to warp a

foreground onto a background, and use a GAN to constrain the composition results to the natural

image manifold. Hu et al. [108] use a 3D STN to scale and translate objects given as volumetric

grids, as a part of scene generation network. Inspired by this line of work, we incorporate an affine

transformation module into our network. This way, the generation module only needs to generate

normalized parts, and the deformation module transforms and assembles the parts together.
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Deep latent space factorization Several approaches suggested to learn disentangled latent spaces

for image representation and manipulation. �-VAE [104] introduce an adjustable hyperparameter

� that balances latent channel capacity and independence constraints with reconstruction accuracy.

InfoGAN [52] achieves the disentangling of factors by maximizing the mutual information between

certain channels of latent code and image labels. Some approaches disentangle the image generation

process using intrinsic decomposition, such as albedo and shading [250], or normalized shape and

deformation grid [216, 249]. The proposed approach differs from [216, 249, 250] in that it maps both

full and partial shapes into the same low dimensional embedding space, while in [216, 249, 250],

different components have their own separated embedding spaces.

Projection in neural networks Projection is widely used in representation learning. It can be used

for transformation from one domain to another domain [26, 213, 214], which is useful for tasks like

translation in natural language processing. For example, Senel et al [244] use projections to map

word vectors into semantic categories. In this work, we use a projection layer to transform a whole

shape embedding into semantic part embeddings.

3.3 The Decomposer-Composer Model

Decomposer network

The Decomposer network is trained to embed unlabeled shapes into a factorized embedding space,

reflecting the shared semantic structure of the shape collection. To allow for composite shape

synthesis, the embedding space has to satisfy the following two properties: factorization consis-

tency across input shapes, and existence of a simple shape composition operator to combine latent

representations of different semantic factors. We propose to model this embedding space V as a

direct sum of subspaces {Vi}Ki=1, where K is the number of semantic parts, and each subspace {Vi}
corresponds to a semantic part i, thus satisfying the factorization consistency property. The second

property is ensured by the fact that every vector v 2 V is given by a sum of unique vi 2 Vi such that

V = V1 � ... � Vk, and part composition may be performed by part embedding summation. This

also implies that the decomposition and composition operations in the embedding space are fully

reversible.

A simple approach for such factorization is to split the dimensions of the n-dimensional embed-

ding space into K coordinate groups, each group representing a certain semantic part-embedding.

In this case, the full shape embedding is a concatenation of part embeddings, an approach explored
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in [280]. This, however, puts a hard constraint on the dimensionality of part embeddings, and thus

also on the representation capacity of each part embedding subspace. Given that different semantic

parts may have different geometric complexities, this factorization may be sub-optimal.

Instead, we perform a data-driven learned factorization of the embedding space into semantic

subspaces. We use learned part-specific projection matrices, denoted by {Pi}Ki=1 2 Rn⇥n. To

ensure that the aforementioned two factorization properties hold, the projection matrices must form a

partition of the identity and satisfy the following three properties

(1) P 2
i = Pi, 8i,

(2) PiPj = 0 whenever i 6= j,

(3) P1 + ... + PK = I, (3.1)

where 0 and I are the all-zero and the identity matrices of size n ⇥ n, respectively.

In practice, we efficiently implement the projection operators using fully connected layers without

added biases, with a total of K ⇤ n2 variables, constrained as in Equation 3.1. The projection layers

receive as input a whole shape encoding, which is produced by a 3D convolutional shape encoder.

The parameters of the shape encoder and the projection layers are learned simultaneously. The

resulting architecture of the Decomposer network is schematically described in Figure 3.2, and

a detailed description of the shape encoder and the projection layer architecture is given in the

Appendix B.

Composer network

The composer network is trained to reconstruct shapes with semantic part labels from sets of

semantic part embedding coordinates. The simplest composer implementation would consist of a

single decoder mirroring the whole binary shape encoder (see Figure 3.2), producing a semantically

labelled reconstructed output shape. Such approach was used in [280], for instance. However, this

straightforward method is known to fail in reconstructing thin volumetric shape parts and other

fine shape details. To address this issue, we use a different approach, where we first separately

reconstruct scaled and centered shape parts, using a shared part decoder. We then produce per-part

transformation parameters and use them to deform the parts in a coherent manner, to obtain a

complete reconstructed shape.

In our model, we make the simplifying assumption that it is possible to combine a given set of

parts into a plausible shape by transforming them with per-part affine transformations and translations.
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Figure 3.3: Schematic description of the cycle consistency constraint. See Section 3.3 for details.

While the true set of transformations which produce plausible shapes is significantly larger and more

complex, our experiments demonstrate that the proposed simplified model is successful at producing

geometrically and visually plausible results. This in-network part transformation is implemented

using a 3D spatial transformer network (STN) [115]. It consists of a localization net, which produces

a set of 12-dimensional affine transformations (including translations) for all parts, and a re-sampling

unit, which transforms and places the reconstructed part volumes at their correct locations in the full

shape. The SNT receives as input both the reconstructed parts from the part decoder, and the sum of

part encodings, for best reconstruction results. The resulting Composer architecture is schematically

described in Figure 3.2; its detailed description is given in the Appendix B.

We note that the proposed approach is related to the two-stage shape synthesis approach of [156],

in which a GAN is first used to synthesize oriented bounding boxes for different parts, and then the

part geometry is created per bounding box using a separate part decoder. Our approach is similar,

yet it works in a reversed order. Namely, we first reconstruct part geometry, and then compute

per-part affine transformation parameters, which are a 12-dimensional equivalent of the oriented part

bounding boxes in [156]. Similarly to [156], this two stage approach improves the reconstruction

of fine geometric details. However, unlike [156], where the GAN and the part decoder where

trained separately, in our approach the two stages belong to the same reconstruction pipeline, trained

simultaneously and end-to-end.
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Cycle consistency

Our training set is comprised of 3D shapes with ground-truth semantic part-decomposition; It does

not include any training examples of synthesized composite shapes. Existing methods for such shape

assembly task operate on 3D meshes with very precise segmentations, and often with additional

knowledge about part connectivity [300, 246, 119]. These methods cannot be applied to a dataset

like ours, to produce a sufficiently large set of plausible new shapes (constructed from existing

parts) to use for training a deep network for composite shape modelling. In order to circumvent

this difficulty, and train the net to produce non-trivial part transformations for geometrically and

semantically plausible part arrangements, we use a cycle consistency constraint. It has been previously

utilized in geometry processing [197], image segmentation [279], and more recently in neural image

transformation [216, 323].

Specifically, given a batch of M training shapes {X}M
i=1, we map them to the factored latent

space using the Decomposer, producing K semantic part encodings per input shape. We the randomly

mix the part encodings of the shapes in the batch, while ensuring that after the mixing each of the new

M encoding sets includes exactly one embedding coordinate per semantic part. We then reconstruct

the shapes with correspondingly mixed parts using the Composer. After that, these new shapes are

passed to the Decomposer-Composer pipeline once again, while de-mixing part encodings produced

by the second Decomposer application, to re-store the original encoding-to-shape association. The

cycle consistency requirement means that the final shapes are as similar as possible to the original M

training shapes. We enforce it using the cycle consistency loss described in the next section. The

double application of the proposed network with part encoding mixing and de-mixing is schematically

described in Figure 3.3.

Loss function

Our loss function is defined as the following weighted sum of several loss terms

L = wPILPI + wpartLpart + wtransLtrans + wcycleLcycle. (3.2)

The weights compensate for the different scales of the loss terms, and reflect their relative importance.
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Partition of the identity loss LPI measures the deviation of the predicted projection matrices from

the optimal projections, as given by Equation 3.1.

Lproj(P1, ..., Pk) =
KX

i=1

kP 2
i � Pik2F +

KX

i,j=1,
i 6=j

kPiPjk2F+

kP1 + ...PK � Ik2F . (3.3)

Part reconstruction loss Lpart is the binary cross-entropy loss between the reconstructed centered

and scaled part volumes and their respective ground truth part indicator volumes, summed over K

parts.

Transformation parameter loss Ltrans is an L2 regression loss between the predicted and the

ground truth 12-dimensional transformation parameter vectors, summed over K parts. Unlike in the

original STN approach [115], we found that direct supervision over the transformation parameters is

critical for our network convergence.

Cycle consistency loss Lcycle is a binary cross-entropy loss between ground truth input volumes

and their reconstructions, obtained using two applications of the proposed network, as described in

Section 3.3.

Training details

The network was implemented in TensorFlow [1], and trained for 500 epochs with batch size 32.

We used Adam optimizer [129] with learning rate 0.0001, decay rate of 0.8, and decay step size of

40 epochs. We found it was essential to first pre-train the binary shape encoder, projection layer

and part decoder parameters separately for 150 epochs, by minimizing the part reconstruction and

the partition of the identity losses and using wtrans = wcycle ⇡ 0, for improved part reconstruction

results. We then train the parameters of the spatial transformer network for another 100 epochs, while

keeping the rest of the parameters fixed. After that we resume the training with all parameters and the

cycle consistency loss to fine-tune the network parameters. The optimal loss combination weights

were empirically detected using the validation set, and set to be wPI = 0.1, wpart = 100, wtrans =

0.1, wcycle = 0.1. The network was trained on each shape category separately.
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Figure 3.4: Reconstruction results of the proposed pipeline, for chair and table shapes. Gray shapes
are the input test shapes; the results are colored according to the part label.

3.4 Experiments

Dataset In our experiments, we used the models from the ShapeNet 3D data collection [46], with

part annotations produced by Yi et al. [307]. The shapes were converted to 32 ⇥ 32 ⇥ 32 occupancy

grids using binvox [199]. Semantic part labels were first assigned to the occupied voxels according

to the proximity to the labeled 3D points, and the final voxel labels were obtained using graph-cuts in

the voxel domain [38]. We used the official ShapeNet train, validation and test data splits in all our

experiments. Additional results for 64 ⇥ 64 ⇥ 64 occupancy grids can be found in the Appendix B.

Shape reconstruction

Figure 3.4 presents the results of reconstructing semantically labeled shapes from unlabelled input

shapes, using the proposed network. Note that since our method performs separate part reconstruction

with part decoders and part placement with an STN, it may produce less accurate part reconstruction,

as compared to segmentation approaches - for example, the handles of the reconstructed rightmost

chair in Figure 3.4. But, as illustrated by our quantitative study in Section 3.4, this allows us to

perform better part-based shape manipulation.

Composite shape synthesis

Shape composition by part exchange In this experiment, we used our structured latent space to

randomly swap corresponding embedding coordinates of pairs of input shapes (e.g.,, embedding
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Figure 3.5: Single part exchange experiment. GT1/2 denote ground truth shapes, REC1/2 - recon-
struction results, SWAP1/2 - part exchange results. Unlabeled shapes were used as an input.

coordinates of legs or seats of two chairs), and reconstruct the new shapes using the Composer. The

results are shown in Figure 3.5, and demonstrate the ability of our system to perform accurate part

exchange, while deforming the geometry of both the new and the existing parts to obtain a plausible

result.

Shape composition by random part assembly In this experiment we tested the ability of the

proposed network to assemble shapes from random parts using our factorized latent space. Specifi-

cally, we mapped batches of input shapes into the latent space using the Decomposer, and created

new shapes by randomly mixing the part embedding coordinates of the shapes in the batch, and

reconstructing new shapes using the Composer. The results are shown in Figure 3.6, for chairs and

tables, and illustrate the ability of the proposed method to combine parts from different shapes, scale

and translate them so that the resulting shape looks realistic.

Full and partial interpolation in the embedding space In this experiment, we tested reconstruc-

tion from linearly interpolated embedding coordinates of complete shapes, as well as of a single

semantic part. For the latter, we performed the part exchange experiment, described above, and

interpolated the coordinates of that part, while keeping the rest of part embedding coordinates fixed.

The results are shown in Figure 3.7.
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Figure 3.6: Shape composition by random part assembly. The top row shows the ground truth
(GT) shapes, and the bottom row - shapes assembled using the proposed approach (see Section 3.4).
Unlabeled shapes were used as an input.
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Figure 3.7: Example of a whole (top) and partial (bottom) shape interpolation. GT1/2 denote original
models, REC1/2 - their reconstructions, and linear interpolation results are in the middle. Unlabeled
shapes were used as an input.

Latent space and projection matrix analysis

The latent space obtained using the proposed method exhibits good separation into subspaces

corresponding to different semantic parts (see Figure 3.8). The projection matrices, while not not

being strictly orthogonal, as required for the partition of the identity (3.1), have low effective ranks,

which is in line with the clear separation into non-overlapping subspaces produced by them. See the

Appendix B for a visualization the projection matrices ranks.
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Figure 3.8: T-SNE visualization [174] of the produced embedding space, using both train and test
shape embedding coordinates. The “empty” part coordinates correspond to the embedding produced
for non-existing parts.

Ablation study and comparison with existing approaches

Ablation study

To highlight the importance of the different elements of our approach, we conducted an ablation

study, where we used several variants of the proposed method, listed below.

Fixed projection matrices Instead of using learned projection matrices in the Decomposer, the

n-dimensional shape encoding is split into K consecutive equal-sized segments, which correspond to

different part embedding subspaces. This is equivalent to using constant projection matrices, where

the elements of the rows corresponding to a particular embedding space dimensions are 1, and the

rest of the elements are 0.

Composer without STN We substituted the proposed composer, consisting of the part decoder

and the STN, with a single decoder producing a labeled shape. The decoder receives the sum of part

encodings as an input, processes it with two FC layers to combine information from different parts,

and then reconstructs a shape with parts labels using a series of deconvolution steps, similar to the
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XXXXXXXXXXXMethod
Metric mIoU mIoU

(parts) Connectivity Classifier
accuracy

Rec. Rec. Rec. Swap Mix Rec. Swap Mix
Our method 0.64 0.65 0.82 0.71 0.65 0.95 0.89 0.83
W/o cycle loss 0.63 0.66 0.74 0.62 0.54 0.93 0.84 0.80
Fixed projection 0.63 0.65 0.72 0.61 0.58 0.94 0.86 0.77
Composer w/o STN 0.75 0.8 0.69 0.48 0.23 0.95 0.9 0.71
Naive placement - - - 0.68 0.62 0.61 0.47 0.21
ComplementMe - - - 0.71 0.47 - 0.66 0.43
Segmentation+STN - - - 0.41 0.64 - 0.64 0.36

Table 3.1: Ablation study results. The evaluation metrics are mean Intersection over Union (mIoU),
per-part mean IoU (mIoU (parts)), shape connectivity measure, and binary shape classifier accuracy.
Rec., Swap and Mix stand for the shape reconstruction, part exchange and random part assembly
experiment results, respectively (see Section 3.4 for a detailed description of the compared methods
and the evaluation metrics.)

part decoder in the proposed architecture.

Without cycle loss We removed the cycle loss component during the network training.

Comparison with existing methods

Most existing methods for composite shape modeling operate on triangulated meshes with precise part

segmentation. Hence, they are not directly applicable to the large-scale ShapeNet dataset with less

precise segmentation, preventing a fair comparison. We therefore added the following comparisons

with modern neural-net-based techniques: we combined the state-of-the-art ComplementMe method

[263] with a 3D-CNN segmentation network [219]. From the former we used the component

placement network, which, given a partial shape and a complementary component, produces a 3-D

translation to place the component correctly w.r.t. the partial shape. To produce the ”to-be-added”

component we used a 3D-CNN segmentation network, described in [219], which achieved a state-of-

the-art mean Intersection over Union (mIoU) of 0.91 on the test set. Together, these two networks

replace our proposed Decomposer-Composer. Both networks were trained using the same training

data as the proposed method. This method is denoted by ComplementMe in Table 3.1.

For an additional comparison, instead of the placement network of ComplementMe we utilized

the spatial transformer network. Here, the STN was trained using the ground truth shape parts, and at

test time it was applied to the results of the segmentation network, described above. This method is

denoted by Segmentation+STN in Table 3.1.
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Finally, we compared the proposed method to a baseline shape composition network. Given

ground-truth shape parts, it composes new shapes from these parts by placing them at their original

locations in the source shapes they were extracted from. All the shapes in our dataset are centered

and uniformly scaled to fill the unit volume, and there exist clusters of geometrically and semantically

similar shapes. Thus, we can expect that even this naive approach without part transformations will

produce plausible results in some cases. This method is denoted by Naive placement in Table 3.1.

Evaluation metrics

Mean Intersection over Union (mIoU) is commonly used to evaluate the performance of seg-

mentation algorithms [164]. Here, we use it as a metric for the reconstruction quality. We computed

the mIoU for both actual-sized reconstructed parts, and scaled and centered parts (when applicable).

We denote the two measures by mIoU and mIoU (parts) in Table 3.1.

Connectivity In part based shape synthesis, one pathological issue is that parts are often discon-

nected, or penetrate each other. Here, we would like to benchmark the quality of part placement, in

terms of part connectivity. For each 32 ⇥ 32 ⇥ 32 volume, we compute the frequency of the shape

forming a single connected component, and report it as Connectivity in Table 3.1.

Classification accuracy To measure the shape composition quality of different methods, we

trained a binary neural classifier to distinguish between ground-truth whole chairs (acting as positive

examples) and chairs produced by naively placing random chair parts together (acting as negative

examples). To construct the negative examples, we randomly combined ground-truth shape parts,

by adding a certain semantic part only once, and placing the parts at their original locations in the

source shapes they were extracted from. In addition, we removed negative examples assembled

from parts from geometrically and semantically similar chairs, since such part arrangement could

produce plausible shapes incorrectly placed in the negative example set. The attained classification

accuracy on the test set was ⇠ 88%. For a given set of chairs, we report the average classification

score. Details of the network can be found in the Appendix B. The results are reported as Classifier

accuracy in Table 3.1.

Symmetry The chair shapes in the ShapeNet are predominantly bilaterally symmetric, with vertical

symmetry plane. Thus, similar to [280], we evaluated the symmetry of the reconstructed shapes,

and defined the Symmetry score as the percentage of the matched voxels (filled or empty) in the

reconstructed volume and its reflection with respect to the vertical symmetry plane. We performed

this evaluation using binarized reconstruction results, effectively measuring the global symmetry of
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the shapes. For the evaluation, we used the shapes in the test set (690 shapes), and conducted three

types of experiments: shape reconstruction, single random part exchange between a pair of random

shapes, shape composition by random part assembly.

Evaluation result discussion

According to all metrics, our method outperforms or performs on par with all the baselines, and

significantly outperforms other existing methods. This shows that our design choices - the cycle

loss, learned projection matrices and usage of the STN, help to achieve plausible results both

when reconstructing shapes, and when performing composite shape synthesis. This is especially

pronounced in the connectivity test results, illustrating that these design choices are necessary for

achieving good assembly quality.

In the classifier accuracy test and the symmetry test the proposed method performs slightly

better or on par with all baselines considered in the ablation study. It seems that both these tests

are less sensitive to disconnected shape components, and most advantage that the proposed method

achieves over the baselines is in its composition robustness. As expected, the naive placement also

achieves high symmetry score, since it preserves the symmetry of the ground-truth parts during shape

assembly.

According to the mIoU and per-part mIoU metrics, the proposed method performs on par with all

baselines, except when using the simple version of the Composer, without STN. This follows from

the fact that the proposed system, while reconstructing better fine geometry features, decomposes the

problem into two inference problems, for the geometry and the transformation, and thus does not

produce as faithful reconstruction of the original model as the simple decoder. Notably, this version

of the architecture achieves worst connectivity scores for all compared methods, which follows from

the fact that such a Decomposer is unable to faithfully reconstruct fine shape details.

3.5 Conclusion

This chapter presented a novel neural architecture termed Decomposer-Composer capable of perform-

ing structure-aware 3D shape modelling. Specifically, our network is able to generate a factorized

latent shape representation, where different semantic part embedding coordinates lie in separate linear

subspaces. The subspace factorization allows us to perform shape manipulation via part embedding

coordinates, exchange parts between shapes, or synthesize novel shapes by assembling a shape from

random parts. Qualitative results show that the proposed system can generate high fidelity 3D shapes
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and meaningful part manipulations. Quantitative results shows we are competitive in the mIOU,

connectivity, symmetry and classification benchmarks.

While the proposed approach makes a step toward automatic shape-from-part assembly, it has

several limitations. First, while we can generate relatively high-fidelity shapes at a low resolution,

memory limitations do not allow us to work with voxelized shapes of higher resolution. Memory-

efficient architectures, such as OctNet [229] and PointGrid [149], may help alleviate this constraint.

Alternatively, using point-based shape representations and compatible deep network architectures,

such as [219], may also reduce the memory requirements and increase the output resolution.

Secondly, we made a simplifying assumption that a plausible shape can be assembled from parts

using per-part affine transformations, which represent only a subset of possible transformations.

While this assumption simplifies the training, it is quite restrictive in terms of the deformations we

can perform. Future work is needed, for incorporating more general transformations with higher

degree of freedom, such as 3D thin plate splines or a general deformation fields. Finally, for this

work we have been using a cross-entropy loss to measure a shape’s reconstruction quality; it would

be interesting to investigate the use of a GAN-based losses like those of Chapter 2, adapted in this

structure-aware shape generation context.



Chapter 4

Building a Latent Space from 3D Shape
Differences

4.1 Overview

The basic learning paradigm of the generative neural networks presented so far: the AutoEncoder

of Chapter 2, and the part-aware AutoEncoder of Chapter 3, was based on decoding the shape

of an object given a low-dimensional encoding of itself. In this chapter we will change gears by

introducing a radically different idea. Instead of encoding directly a representation of the output

we wish to decode, we will create and learn to decode an operator that reflects how the input
object shape is different from another object shape. That is, we will make use of an indirect and

implicit representation of a shape in the context of a collection. Namely, the “operator” we will learn

to decode will capture how the input shape is different from a fixed “base” shape, e.g., it will capture

how one can deform the input to match the base shape. Specifically, we will use the linear shape-

difference operators introduced in the seminal paper of Rustamov et al. [239]; which assumes the

(rich) supervision of pairwise correspondences among shapes and expresses their differences w.r.t.

to the geometry of their underlying mesh manifold. Crucially, such linear shape-differences, can be

compactly encoded as small-sized matrices making convolutional learning on them straightforward.

Furthermore, as we show with the experiments presented in this chapter one can exploit the matrix

nature of the proposed representation to apply multipicative linear algebra when doing latent-based

shape-interpolations and analogies, with improved results compared to those of the linear approach

presented in Chapter 3 (see Figures 4.1 and 4.8 for some examples).

It is worth pointing out, that this is the third and final generative network presented in this thesis,

57
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Figure 4.1: Shape interpolation via OperatorNet (top) and a PointNet-based AutoEncoder, similar
to those presented in Chapter 3 (bottom).The interpolations based on the approach presented in the
chapter (OperatorNet) are more smooth and less distorted.

and the described approach and included applications and experiments, (primarily) concern shapes

represented as meshes. Moreover, while the approach taken in this chapter is purely geometrical

and algorithmic, i.e., it examines how shapes are different based on correspondence-induced linear-

algebraic constructs, it is highly related to the upcoming chapter. Namely, in Chapter 5 we also

investigate geometric differences between shapes, but our focus there is how such differences are

being conceived and expressed by humans in their “natural” way, i.e., in language. Last, it should be

pointed out that the materials of this chapter are based on our work OperatorNet: Recovering 3D

Shapes from Difference Operators [111]. Two closely related earlier works, where we also explored

the analysis of shape collections based on correspondence-induced matrices, but without focusing on

deep-learning, are our works [110, 109].

To summarize, our specific contributions in this domain are:

• We propose a learning-based pipeline to reconstruct 3D shapes from a set of difference

operators.
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• We propose a novel formulation of extrinsic shape difference, which complements the intrinsic

operators formulated in [239].
• We demonstrate that by applying algebraic operations on shape differences, we can synthesize

new operators and thus new shapes via OperatorNet, enabling shape manipulations such as

interpolation and analogy.

4.2 Related Work

Shape reconstruction Some of the key ideas presented in this chapter are closely related to prior

works related to shape reconstruction from intrinsic operators, which were recently considered in

[35, 61]. In these works, several advanced and purely geometric optimization techniques were

proposed that give satisfactory results in the presence of full information [35] or under strong

(extrinsic) regularization [61]. These works have also laid the theoretical foundation for shape

recovery by demonstrating that shape difference operators, in principle, contain complete information

necessary for recovering the shape embedding (e.g., Propositions 2 and 4 in [61]). On the other hand,

these methods also highlight the practical challenges raised by this approach to reconstruction: when

reconstructing a shape without any knowledge of the collection or “shape space” that it belongs to. In

contrast, in this chapter we show that when using shape difference representations in a learning-based

framework, realistic 3D shapes can be recovered efficiently, and moreover that entirely new shapes

can be synthesized using the algebraic structure of difference operators, e.g., for shape interpolation

and analogy.

Shape representations for learning The materials of this chapter are also related to the several

recent techniques aimed at applying deep learning methods to shape analysis. As discussed in

Section 1.2 one of the main challenges deep learning faces when dealing with 3D shapes is defining

a meaningful notion of convolution, while ensuring invariance to basic 3D transformations. Despite

the tremendous progress in the last few years in designing methods that attempt to address these

bottlenecks [253, 181, 282, 41, 179], defining a shape representation that is compact, lends itself

naturally to learning, while being invariant to the desired class of transformations (e.g., rigid motions)

and not limited to a particular topology, remains a challenge. As we show below, the proposed

representations used in this chapter are well-suited for learning applications, and especially for

encoding and recovering geometric structure information.



4.2. RELATED WORK 60

Shape space Exploring the structure of shape spaces has been an attractive research topic for

a long time. Classical PCA-based models, e.g., [17, 97], and more recent shape space models,

adapted to specific shape classes such as humans or animals, such as [167, 326], or parametric model

collections [243]; all typically leverage the fact that the space of “realistic” shapes is significantly

smaller than the space of all possible embeddings. This has also recently been exploited in the

context of learning-based shape synthesis applications for shape completion [160], interpolation [28]

and point cloud reconstruction like those presented in Chapter 2. These techniques heavily leverage

the recent proliferation of large shape collections such as DFAUST [34] and ShapeNet [46] to name

a few. At the same time, it is not clear if, for example, the commonly used linear interpolation of

latent vectors is well-justified, leading to unrealistic synthesized shapes. Instead, the shape difference

operators that we use in this chapter satisfy a well-founded multiplicative algebra, which, as we show,

can naturally create more realistic synthetic interpolations.

4.2.1 Preliminaries & notations

Discretization of Shapes Throughout this Section, we assume that a shape is given as a triangular

mesh (V, T ), where V = {v1, v2, · · · , vn} is the vertex set, and T = {(vi, vj , vk)|vi, vj , vk 2 V} is

the set of triangles encoding the connectivity of the vertices.

Laplace-Beltrami Operator We associate with each shape a discretized Laplace-Beltrami oper-

ator, L := A�1W , using the cotangent weight scheme from [183, 210], where W is the cotangent

weight (stiffness) matrix, and A is the diagonal lumped area (mass) matrix. Furthermore, we denote

by ⇤ the diagonal matrix containing the k smallest eigenvalues, and by � the corresponding eigen-

vectors of S, such that W� = A�⇤. In particular, the eigenvalues stored in ⇤ are non-negative and

can be ordered as 0 = �1  �2  · · · . The columns of � are sorted accordingly, and are orthonormal

with respect to the area matrix, i.e. �TA� = Ik⇥k, the k ⇥ k identity matrix. It is well-known that

the Laplace-Beltrami eigenbasis provides a multi-scale understanding of a shape [151], and allows to

approximate the space of functions via a subspace spanned by the first few eigenvectors of �.

Functional Maps The functional map framework was introduced in [201] primarily as an alterna-

tive representation of maps across shapes. In our context, given two shapes S0, S1 and a point-wise

map T from S1 to S0, we can express the functional map C01 from S0 to S1, as follows:

C01 = �T

1 A1⇧01�0. (4.1)
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Here, A1 is the area matrix of S1, and ⇧01 is a binary matrix satisfying ⇧01(p, q) = 1 if T (p) = q

and 0 otherwise. Note that C01 is a k1 ⇥ k0 matrix, where k1, k0 is the number of basis functions

chosen on S1 and S0. This matrix allows to transport functions as follows: if f is a function on S0

expressed as a vector of coefficients f , s.t. f = �0f , then C01f is the vector of coefficients of the

corresponding function on S1, expressed in the basis of �1.

In general, not every functional map matrix arises from a point-wise map, and might include

for example soft correspondences, which map a point to a probability density function. All of the

tools that we develop below can accommodate such general maps. This is a key advantage of our

approach, as it does not rely on all shapes having the same number of points, and only requires the

knowledge of functional map matrices, which can be computed using existing techniques [202, 161].

Intrinsic Shape Difference Operators Finally, to represent shapes themselves, we use the notion

of shape difference operators proposed in [239]. Within our setting, they can be summarized as

follows: given a base shape S0, an arbitrary shape Si and a functional map C0i between them, let K0

(resp. Ki) be a positive semi-definite matrix, which defines some inner product for functions on S0

(resp. Si) expressed in the corresponding bases. Thus, for a pair of functions f, g on S0 expressed as

vectors of coefficients a,b, we have < f, g >= aTK0b.

Note that these two inner products K0,Ki are not comparable, since they are expressed in

different bases. Fortunately, the functional map C0i plays a role of basis synchronizer. Thus, a shape

difference operator, which captures the difference between S0 and Si is given simply as:

DK

0i = K+
0 (CT

0iKiC0i), (4.2)

where + is the Moore-Penrose pseudo-inverse.

The original work [239] considered two intrinsic inner products, which using the notation above,

can be expressed as: KL
2

= Id, and KH
1

= ⇤. These inner products, in turn lead to the following

shape differences operators, capturing area and angle distortions respectively:

Area-based (L2): DA

0i =CT

0iC0i, (4.3)

Conformal (H1): DC

0i =⇤+
0 C

T

0i⇤iC0i. (4.4)

These shape difference operators have several key properties. First, they allow to represent

an arbitrary shape Si, as a pair of matrices of size k0 ⇥ k0, independent of the number of points,

by requiring only a functional map between the base shape S0 and Si. Thus, the size of this
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Figure 4.2: Illustration of shape analogy.

representation can be controlled by choosing an appropriate value of k0 which allows to gain multi-

scale information about the geometry of Si, from the point of view of S0. Second, and perhaps more

importantly, these matrices are invariant to rigid (and indeed any intrinsic isometry) transformation

of S0 or Si. Finally, previous works [61] have shown that shape differences in principle contain

complete information about the intrinsic geometry of a shape. As we show below these properties

naturally enable the use of learning applications for shape recovery.

Functoriality of Shape Differences Another useful property of the shape difference operators is

functoriality, shown in [239], and which we exploit in our shape synthesis applications in Section 4.6.

Given shape differences D0i,D0j of shapes Si and Sj with respect to a base shape S0, functoriality

allows to compute the difference Dij , without functional maps between Si and Sj . Namely (see

Prop. 4.2.4 in [60]):

Dij = C0iD
+
0iD0jC

�1
0i . (4.5)

Intuitively, this means that shape differences naturally satisfy the multiplicative algebra: D0iDij =

D0j , up to a change of basis ensured by C0i.

This property can be used for shape analogies: given shapes SA, SB and SC , to find SX such that

SX relates to SC in the same way as SB relates to SA (see the illustration in Figure 4.2), which can be

solved by looking for a shape X that satisfies: C+
0CDCXC0C = C+

0ADABC0A. In our application,

we first create an appropriate D0X and then use our network to synthesize the corresponding shape.

Finally, the multiplicative property also suggests a way of interpolation in the space of shape

differences. Namely, rather than using basic linear interpolation between D0i and D0j , we interpolate

on the Lie algebra of the Lie group of shape differences, using the exponential map and its inverse,
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which leads to:

D(t) = exp((1 � t) log(D0i) + t log(D0j)), t 2 [0, 1]. (4.6)

Here exp and log are matrix exponential and logarithm respectively. Note that, around identity, the

linearization provided by the Lie algebra is exact, and we have observed it to produce very accurate

results in general.

4.3 Extrinsic Shape Difference

In theory, with purely intrinsic information one at the best can determine a shape up to isometric

transformations, which in our setting means being able to capture the edge lengths of the mesh.

Recovering the shape from its edge lengths, while possible in certain simple scenarios, nevertheless

often leads to ambiguities, as highlighted in [61]. To alleviate such ambiguities, we propose to

augment the existing purely intrinsic shape differences with a novel compatible shape difference

operator that gives rise to a more complete characterization of shapes, and in turn boosts our

reconstruction.

One basic approach that has been used to combine extrinsic or embedding-dependent information

with the multi-scale Laplace-Beltrami basis, is simply to project the 3D coordinates, as functions

onto the basis, to obtain three vectors of coefficients (one for each X, Y, Z coordinates): f = �+X ,

where X is the nV ⇥ 3 matrix of vertex coordinates [151, 136]. Unfortunately representing a shape

through f , while also multi-scale and compact, has several limitations. First this representation is not

rotationally invariant, and second, it does not provide information about intrinsic geometry, so that

interpolation of coordinate vectors can easily lead to loss of shape area, for example.

Another option, which is more compatible with the shape difference representation and is

rotationally invariant, is to encode the inner products of coordinate functions on each shape using the

Gram matrix G = XXT , where X is again the matrix of coordinate functions. Expressing G in the

corresponding basis, and using Eq. (4.2) gives rise to a shape difference-like representation of the

shape coordinates. Indeed, the following theorem (see proof in Appendix B.1.1) guarantees that the

resulting shape difference representation contains the same information, up to rotational invariance,

as simply projecting the coordinates onto the basis.

Theorem 1. Let G = �TAXXTA� be the extrinsic inner product encoded in �, where A is the

lumped mass matrix (as normalization factor), then one can recover the projections of the coordinate

functions, X , on the subspace spanned by � from G up to rigid transformations. In particular, when
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Figure 4.3: From left to right: original shape with 1000 vertices, the recovered embedding from G
encoded in the leading k = 10, 60, 100 and 300 eigenbasis of the original shape.

� is a complete full basis, the recovery of X is exact.

As an illustration of Theorem 1, we show in Figure 4.3 the embeddings recovered from G when

the number of basis functions in � range from 10 to 300.

Representing a shape via its Gram matrix G in either the full or the reduced basis has one key

limitation, however, since the rank of G is at most 3, meaning that the majority of its eigenvalues

are zero. This turns out to be an issue in applications, where gaining information about the local

geometry of the shape is important, for example in our shape analogies experiments.

To compensate for this rank deficiency, we finalize our construction of the extrinsic inner product

by making it Laplacian-like:

ED(i, j) =

8
><

>:

�E(i, j) if i 6= j,
P

i 6=j
E(i, j) i = j.

(4.7)

Where E(i, j) is kvi � vjk2A(i, i)A(j, j), i.e., the squared Euclidean distance between points vi, vj

on the shape, weighted by the respective vertex area measure. Since ED can be regarded as the

Laplacian of a complete graph, all but one of its eigenvalues are strictly positive.

It is worth noting that the Gram matrix and the squared Euclidean distance matrix are inherently

related and can be recovered from each other as is commonly done in the Multi-Dimensional Scaling

literature [62].
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Figure 4.4: A pair of shapes are compared. The most area (resp. extrinsic) distorted region is captured
by the leading eigenfunction of the area-based (resp. extrinsic) shape difference.

To summarize, given a base shape S0, another shape Si and a functional map C0i we encode the

extrinsic information of Si from the point of view of S0 as follows:

DE

i = (�T

0 E
D

0 �0)
+(CT

0i�
T

i E
D

i �iC0i). (4.8)

In Figure 4.4, we compute DA and DE of the target shape with respect to the base, and color

code their respective eigenfunctions associated with the largest eigenvalue, on the shapes to the

right. As argued in [239] these functions capture the areas of highest distortion between the shapes,

with respect to the corresponding inner products. Note that the eigenfunction of DA captures the

armpit where the local area changes significantly, while that of DE captures the hand, where the

pose changes are evident.

It is worth noting that in [61], the authors also propose a shape difference formulation for

encoding extrinsic information, which is defined on the shape offset in order to extract information

for surface normal. However, the construction of offset can lead to instabilities, and moreover, this

formulation only gives information about local distances, making it hard to recover large changes in

pose.
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4.4 Network Details

Problem Setup Our general goal is to develop a neural network capable of recovering the coordi-

nates functions of a shape, given its representation as a set of shape difference operators. This way

we aim to solve the same problem considered in [35, 61]. However, unlike these previous, purely

geometric methods, we further leverage a collection of training shapes to learn and constrain the

reconstruction to the space of realistic shapes.

Thus, we assume that we are given a collection of shapes, each represented by a set of shape

difference operators with respect to a fixed base shape. We also assume the presence of a point-wise

map from the base shape to each of the shapes in the collection, which allows us to compute the

“ground truth” embedding of each shape. We represent this embedding as three coordinate functions

on the base shape. Our goal then is to design a network, capable of converting the input shape

difference operators to the ground truth coordinate functions.

At test time, we use this network to reconstruct a target shape given only the shape difference

operators with respect to the base shape. These shape difference operators can be obtained using the

knowledge of a functional map from the base shape, or synthesized directly for shape analogies or

interpolations applications.

Architecture To solve the problem above we developed the OperatorNet architecture, which takes

as input shape difference matrices and outputs coordinate functions representing the original shapes.

Our network has two modules: a shallow convolutional encoder and a 3-layer dense decoder (see

Appendix, Figure B.5 for a pictorial overview).

The grid structure of shape differences is exploited by the encoder through the use of convolutions.

Note however that translation invariance does not apply to these matrices.

After comparing with multiple depths of encoders, we selected a shallow version as it performed

the best in practice, implying that the shape difference representation already encodes meaningful

information efficiently. Moreover, as shown in [61] the edge lengths of a mesh can be recovered

from intrinsic shape differences through a series of least squares problems, hinting that increasing

the depth of the network and thus the non-linearity might not be necessary with shape differences.

On the other hand, the decoder is selected for its ability to transform the latent representation to

coordinate functions for reconstruction and interpolation tasks.

Input Shape Differences We construct the input shape differences using a truncated eigenbasis of

dimension 60 on the base shape, and the full basis on the target one, within all experiments, regardless
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of the number of vertices on the actually shapes. The functional maps from the base to the targets are

induced by the identity maps, since our training shapes are in 1-1 correspondence. This implies that

each of the shapes is represented by three 60 ⇥ 60 matrices, representing the area-based, conformal

and extrinsic shape differences respectively. The independence among the shape differences allows

flexibility in selecting the combination of input shape differences. In Section 4.5, we compare the

performance of several combinations. A detailed ablation study with respect to the input channels

and network depth is presented in Appendix B.1.4. It is worth noting that recent learning-based

shape matching techniques enable efficient (functional) maps estimation. In particular, we adapt the

framework of [236] and evaluate OperatorNet trained with computed shape differences in Section 4.5.

Datasets We train OperatorNet on two types of datasets: humans and animals. For human shapes,

our training set consists of 9440 shapes sampled from the DFAUST dataset [34] and 8000 from

the SURREAL dataset [274], which is generated with the model proposed in [167]. The DFAUST

dataset contains 4D scan of 10 human characters subject to a various of motions. On the other hand,

the SURREAL dataset injects more variability to the body types. For animals, we used the parametric

model proposed in SMAL [326] to generate 1800 animals of 3 different species, including lions,

dogs, and horses. The meshes of the humans (resp. animals) are simplified to 1000 vertices (resp.

1769 vertices).

Loss Function OperatorNet reconstructs coordinate functions of a given training shape. Our shape

reconstruction loss operates in two steps. First, we estimate the optimal rigid transformation to

align the ground truth coordinate functions Xgt and the reconstructed ones Xrecon using the Kabsh

algorithm [22] with ground truth correspondences. Second, we estimate the mean squared error

between the aligned reconstruction and the ground truth.

L(Xgt, Xrecon) =
1

n

nX

i=1

(RXgt(X
i

recon) � Xi

gt)
2. (4.9)

Here RVgt is the function that computes the optimal transformation between Srecon and Sgt.

We align the computed reconstructions to the ground truth embedding, so that the quality of the

reconstructed point cloud is invariant to rigid transformations. This is important since the shape

difference operators are invariant to rigid motion of the shape, and thus the network should not

be penalized, for not recovering the correct orientation. On the other hand, this loss function is

differentiable, since we use a closed-form expression of RXgt , given by the SVD, which enables
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back-propagation in neural network training.

4.5 Evaluation

In this section, we provide both qualitative and quantitative evaluations of the results from Operator-

Net, and compare them to the geometric baselines.

Evaluation Metrics We denote by Sgt and Srecon the ground-truth and the reconstructed meshes

respectively. First we denote by dR = L(Xgt, Xrecon), where L is the rotationally-invariant

distance defined in Eq. (4.9) and X is the coordinate functions of S. For a comprehensive, unbiased

evaluation and comparison, we introduce the following two new metrics: (1) dV = |V (Sgt) �
V (Srecon)|/V (Sgt), i.e., the relative error of mesh volumes; (3) dE = mean(i,j)|l

gt
ij

� lrecon
ij

|/lgt
ij

,

where lij is the length of edge (i, j).

Baselines Two baselines are considered: (1) the intrinsic reconstruction method from [35], in which

we evaluate with the ‘Shape-from-Laplacian’ option and use full basis in both the base shape and the

target shape; (2) the reconstruction method from [61], where the authors construct offset surfaces

of the shapes to take account of extrinsic geometry, we evaluate with the same basis truncation as

our input. Moreover, the latter also gives a version of purely intrinsic reconstruction. Beyond that,

we also consider the nearest neighbourhood retrieval from the training set with respect to distances

between shape difference representations.

Test Data We retain 800 shapes from DFAUST dataset as the test set, which contain 10 sub-

collections (character + action sequence, each consists of 80 shapes) that are isolated from the

training/validation set. For the efficiency of baseline evaluation, we further sample 5 shapes via

furthest point sampling regarding the pair-wise Hausdorff distance from each of the sub-collection,

resulting in a set of 50 shapes, that covers significant variability in both styles and poses in the

original test set.

Quantitative Results We list all the scores regarding the metrics defined above in Table 4.1.

First of all, OperatorNet using both intrinsic and extrinsic shape differences achieved the smallest

reconstruction error (i.e., dR), and the purely intrinsic version is next to the best. OperatorNet trained

on shape differences from computed functional maps achieve competing performances showing that
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Table 4.1: Quantitative evaluation of shape reconstruction (dR is at the scale of 10�4).

dR dV dE

Op.Net (Int+Ext) 1.11 0.014 0.045
Op.Net (Int) 2.41 0.013 0.046
Op.Net (Ext) 1.25 0.017 0.046

Op.Net (Comp)(Ext) 3.86 0.021 0.052
Op.Net (Comp)(Int+Ext) 6.22 0.022 0.053

SfL [35] 48.8 0.081 0.012
FuncChar [61](Int) 65.1 0.356 0.118

FuncChar [61] (Int+Ext) 28.4 0.028 0.110
NN 25.5 0.005 0.043

our method is efficient even in the absence of ground truth one-to-one correspondences. Note also

that all versions of OperatorNet significantly outperform the other baselines.

Regarding the volume and edge recovery accuracy, either the complete or the intrinsic-only

version of OperatorNet achieves second to the best result. It is worth noting that, since the nearest

neighbourhood search in general retrieves the right body type, the volume is well recovered. On

the other hand, full Laplacian of the target shape is provided as input for the Shape-from-Laplacian

baseline, thus it is expected to preserve well the intrinsic information.

Qualitative Results We demonstrate the reconstructed shapes from OperatorNet and the afore-

mentioned baselines in Figure 4.5, the red shape in each row therein is the respective ground-truth

target shape. The base shape in this experiment (also the base shape we compute shape difference on)

is shown in Figure 4.4, which is in the rest pose. The geometric baselines in general perform worse

when the poses changes significantly with respect to the base (see the top two rows in Figure 4.5), but

gives relatively better result when the difference is mainly on the style (see the last row). Our method,

on the other hand, produces consistently good reconstruction in all the cases. It is also worth noting

that, as expected, OperatorNet using all 3 types of shape differences gives both the best quantitative

and qualitative results. Finally, we present a qualitative verification of the generalization power of

OperatorNet in Appendix B.1.2.

4.6 Applications

In this section, we present all of our results using OperatorNet trained with both intrinsic and extrinsic

shape differences, which are induced by ground-truth maps.
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Figure 4.5: Qualitative comparison of our reconstructions and the baselines.

4.6.1 Shape interpolation

Given two shapes, we first interpolate the regarding shape differences using the formulation in

Eq.(4.6) (an alternative is to interpolate shape differences linearly, we provide comparison to such

in Appendix B.1.3), and then synthesize intermediate shapes by inferring the interpolated shape

differences with OperatorNet.

We compare our method against several baselines. First, a PointNet autoencoder is trained with

the encoder architecture from [219] and with our decoder. Two versions of PointNet are trained: one

autoencoder with spatial transformers and one without. The autoencoder without spatial transformers

performs better at reconstruction and interpolation, it is therefore selected for the comparisons.

Another autoencoder based on PointNet++ [222] is similarly trained.



4.6. APPLICATIONS 71

Figure 4.6: Shape interpolation between two humans. Note that the interpolation by Multi-chart
GAN is less evenly developed than the bottom row (e.g., the positions of the arms in the centre
three shapes change abruptly); autoencoders based on PointNet and PointNet++ both produce
shapes with local area distortion; and the interpolation from Nearest-Neighborhood retrieval is not
continuous. Contrastingly, the interpolation via OperatorNet is more natural and smooth, compared
to the baselines (see text for more details).

Nearest neighbor (NN) interpolation retrieves the nearest neighbour of the interpolated shape

differences in the training set and uses the corresponding labels for interpolation.

Moreover, we also compare to the interpolation result from a recent work [29], where a GAN

is trained to generate realistic human shapes. Note that, as stated in [29], the interpolation is done

as follows: first one picks two randomly generated latent vectors z1, z2, which, via the GAN gives
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Figure 4.7: Shape interpolation from a tiger (left) to a horse (right) using OperatorNet trained on
animals dataset.

arise to two shapes G(z1), G(z2). Then, the interpolation between the two shapes are achieved as

G(z(t)), where z(t) = (1 � t)z1 + tz2. In particular, we randomly generate 1000 shapes using their

trained model and pick G(zi), i = 1, 2 that are nearest to the red shapes in the last row of Figure 4.6

for interpolation comparison.

In Figure 4.6, the first row shows the interpolation between the two end shapes by [28], which

is not developed evenly, for instance, the arms change abruptly during the three middle shapes,

while there is little change on that region afterwards. As shown in the second and the third rows,

both the results of the two autoencoders suffer obvious area distortions in the arms (see a detailed

comparison in Figure 4.1). The fourth row of Figure 4.6 indicates the NN approach fails to deliver a

continuous deformation sequence. In contrast, interpolation using OperatorNet is continuous and

respects the structure and constraints of the body, suggesting that shape differences encode efficiently

the structure.

We also train OperatorNet on the animals dataset as described in Section 4.4 and show in

Figure 4.7 an interpolation from a tiger to a horse.

4.6.2 Shape analogy

Our second application is to construct semantically meaningful new shapes based on shape analogies.

Given shapes SA, SB, SC , our goal is to construct a new shape SX , such that SC is to SX as SA is to

SX .

Following the discussion in Section 2.4, the functoriality of shape differences allows an explicit

and mathematically meaningful way of constructing the shape difference of SX , given that of SA, SB

and SC . Namely, DX = DCD
+
A
DB. Then, with our OperatorNet, we reconstruct the embedding of

the unknown SX by feeding DX to the network.

We compare our results to that of the PointNet autoencoder. For the latter, we reconstruct SX by

decoding the neural-network’s latent code with respect to the additive formula, i.e., lX = lC �lA+lB ,

where lA is the latent code of shape SA (and similarly for SB, SC).
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In Figure 4.9, we show shape analogies of pose transfer (top row) and style transfer (bottom row)

via OperatorNet and PointNet autoencoder on human shapes. It is evident that our results are both

more natural and intuitive.

We also show analogies among animals in Figure 4.10, where we present both pose transfer (top

row) and style transfer (bottom row) and comparison to the results of PointNet.

Moreover, we present a set of more challenging shape analogies that transfer gender across

human shapes in Figure 4.8. Namely, we fix SA, SB , and test analogies with different SC (the 6

male shapes in red). Note that SA and SB are two characters in comparable poses and styles but of

different genders, ideally the right analogies, SX , should be a ‘female’ version of SC with similar

poses and styles.

We present the analogies from OperatorNet in the first results column, and those from PointNet

in the second results column (both in blue). It is obvious that PointNet, though works in some cases,

in general produces less semantically meaningful analogies than ours (see discrepancies in the red

dotted boxes).

4.7 Conclusion

In this chapter we have introduced a novel learning-based technique for recovering shapes from

their difference operators. Our key observation is that shape differences, stored as compact matrices

lend themselves naturally to learning and allow to both recover the underlying shape space in a

collection and encode the geometry of individual shapes. We also introduce a novel extrinsic shape

difference operator and show its utility for shape reconstruction and other applications such as shape

interpolation and analogies. The approach is only well-adapted to shapes represented as triangle

meshes. A valuable future work would be to extend this framework to both learn the optimal inner

products from data, and adapt the pipeline to other shape representations, such as point clouds or

triangle soups.
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Figure 4.8: Transferring gender via shape analogies: SA and SB are a fixed pair of human shapes
with similar poses and styles, but of different genders. We generate SX , which is supposed to be a
‘female’ version of the varying SC . Our analogies are semantically meaningful, while PointNet can
produce suboptimal results (see the red dotted boxes for the discrepancies).
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Figure 4.9: Human shape analogies via OperatorNet and PointNet autoencoder (see the red dotted
boxes for the discrepancies).

Figure 4.10: Animal shape analogies via OperatorNet and PointNet autoencoder (see the red dotted
boxes for the discrepancies).



Chapter 5

Discriminating the Shape of Objects
with Referential Language

distractors target

thin legs, no holes in backfive bars on back, skinny top

irregular cube on two legs

wide seat with solid back
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Neural Speaking 

(novel images) (real-world images) (novel 3D point-clouds)
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Figure 5.1: Teaser summary of Chapter’s contributions. We introduce a novel corpus of utterances
that refer to the shape of objects and use it to develop multimodal neural speakers and listeners
with broad generalization capacity. Top row: Our neural speaker generates utterances to distinguish
a ‘target’ shape from two ‘distractor’ shapes in unseen: images of synthetic data (left), out-of-
distribution (OOD) real-world images (center), and 3D point-clouds of CAD models (right). Bottom
row: Our neural listener interprets human-generated utterances in unseen (left-to-right): images of
synthetic data, OOD object classes (here, lamps), and OOD isolated object parts. Listener scores
indicate the model’s confidence about which object the utterance refers to. The words are color-coded
according to their importance, as judged by the attention module of this listener (warmer color
indicates higher attention).
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5.1 Overview

In this chapter we explore how fine-grained differences between the shapes of common objects

are expressed in language, grounded on 2D and/or 3D object representations. We first introduce a

large scale, carefully controlled dataset of human utterances each of which refers to a 2D rendering

of a 3D CAD model so as to distinguish it from a set of shape-wise similar alternatives. Using

this dataset, we then develop neural language understanding (listening) and production (speaking)

models that vary in their grounding (pure 3D forms via point-clouds vs. rendered 2D images), the

degree of pragmatic reasoning captured (e.g. speakers that reason about a listener or not), and the

neural architecture (e.g. with or without attention). We show that these models perform well with

both synthetic and human partners, and with held out utterances and objects. We also show that

these models are capable of zero-shot transfer learning to novel object classes (e.g. transfer from

training on chairs to testing on lamps), as well as to real-world images drawn from furniture catalogs.

Finally, with carefully done lesion studies we demonstrate that the neural listeners depend heavily on

part-related words and associate these words correctly with visual parts of objects. Interestingly,

this part-awareness is acquired without any explicit supervision on semantic shape parts (like those

used in Chapter 3) and furthermore transfer learning to novel classes is most successful when known

part-related words are available. Finally, unlike the material presented in Chapter 4, here we are

exploring shape-differences from a more human-centric angle by focusing on the cognitive aspects

of shape differences as these are expressed in language. The materials of this chapter are based on

our paper “ShapeGlot: Learning Language for Shape Differentiation” [7] and taken together they

illustrate a practical approach to language grounding, and a case study in the relationship between

object shape and linguistic structure when it comes to object differentiation.

5.2 Introduction

Objects are best understood in terms of their structure and function, both of which rest on a foundation

composed of object parts and their relations [79, 77, 324, 75]. Natural language has been optimized

across human history to solve the problem of efficiently communicating the aspects of the world

most relevant to one’s current goals [133, 82]. As such, language can provide an effective medium to

describe the shape and the parts of different objects, and as a result, to express object differences.

For instance, when we see a chair we can analyze it into semantically meaningful parts, like its back

and its seat, and can combine words to create utterances that reflect its geometric and topological
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shape-properties e.g. ‘has a wide seat with a solid back’. Moreover, given a specific communication

context, we can craft references that are not merely true, but which are also relevant e.g. we can refer

to the lines found in a chair’s back to distinguish it among other similar objects (see Fig. 5.1).

In this chapter we explore this interplay between natural, referential language, and the shape

of common objects. While a great deal of recent work has explored visually-grounded language

understanding [126, 194, 312, 170, 169, 311], the resulting models have limited capacity to reflect the

geometry and topology (i.e. the shape) of the underlying objects. This is because reference in previous

studies was possible using properties like the object’s color, or spatial configuration, including the

absolute or relative (to other objects) location. Indeed, eliciting language that refers only to shape

properties requires carefully controlling the objects, their presentation, and the underlying linguistic

task. To address these challenges, in this work we utilize 3D CAD representations of objects which

allow for flexible and controlled presentation (i.e. textureless, uniform-color objects, viewed in a

fixed pose). We further make use of the 3D form to construct a reference game task in which the

referred object is shape-wise similar to the distracting objects. The result of this effort is a new

multimodal dataset, termed ShapeGlot, comprised of 4,511 unique chairs from ShapeNet [46] and

78,789 referential utterances. In ShapeGlot chairs are organized into 4,054 sets of size 3 (representing

communication contexts) and each utterance is intended to distinguish a chair in context.

We use ShapeGlot to build and analyze a pool of modern neural language understanding (listening)

and production (speaking) models. These models vary in their grounding (pure 3D forms via point-

clouds vs. rendered 2D images), the degree of pragmatic reasoning captured (e.g. speakers that reason

about a listener or not) and their precise neural architecture (e.g. with or without word attention, with

context-free, or context-aware object encodings). We evaluate the effect of these choices on the

original reference game task with both synthetic and human partners and find models with strong

performance. Since language conveys abstractions such as object parts, that are shared between

object categories, we hypothesize that our models learn robust representations that are transferable

to objects of unseen classes (e.g. training on chairs while testing on lamps). Indeed, we show that

these models have strong generalization capacity to novel object classes, as well as to real-world

images drawn from furniture catalogs.

Finally, we explore how our models are succeeding on their communication tasks. We demon-

strate that the neural listeners learn to prioritize the same abstractions in objects (i.e. properties of

chair parts) that humans do in solving the communication task, despite never being provided with an

explicit decomposition of these objects into parts. Similarly, we find that neural listeners transfer

to novel object classes more successfully when known part-related words are available. Finally,
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we show that pragmatic neural speakers who consult an imagined (simulated) listener produce

significantly more informative utterances than listener-unaware, literal speakers, as measured by

human performance in identifying the correct object given the generated utterance.

5.3 Related Work

Image labeling and captioning Our work builds on recent progress in the development of vision

models that involve some amount of language data, including object categorization [251, 319] and

image captioning [122, 278, 301]. Unlike object categorization, which pre-specifies a fixed set of

class labels to which all images must project, our systems use open-ended, referential language.

Similarly to other recent works in image captioning [177, 194, 312, 170, 276, 169, 311], instead of

captioning a single image (or entity therein), in isolation, our systems learn how to communicate

across diverse communication contexts.

Reference games In our work we use reference games [126] in order to operationalize the

demand to be relevant in context. The basic arrangement of such games can be traced back to the

language games explored by Wittgenstein [289] and Lewis [153]. For decades, such games have

been a valuable tool in cognitive science to quantitatively measure inferences about language use and

the behavioral consequences of those inferences [233, 137, 57, 272]. Unlike traditional captioning or

labeling tasks where participants produce labels in isolation, reference games have a well-defined

task objective and can be easily designed to elicit a wide variety of referring expressions even for

the same target object by manipulating which objects serve as the distractors. We exploit these

properties to ensure that our system acquires flexibility in how it combines linguistic and visual

representations to solve the task. Recently, these approaches have also been adopted as a benchmark

for discriminative or context-aware NLP [203, 15, 259, 276, 193, 58, 148].

Rational speech acts framework Our models draw on recent formalization of human lan-

guage use in the Rational Speech Acts (RSA) framework [88]. At the core of RSA is the Gricean

proposal [93] that speakers are agents who select utterances that are parsimonious yet informative

about the state of the world. RSA formalizes this notion of informativity as the expected reduction

in the uncertainty of an (internally simulated) listener, as our pragmatic speaker does. The literal

listener in RSA uses semantics that measure compatibility between an utterance and a situation, as

our baseline listener does. Previous work has shown that RSA models account for context sensitivity

in speakers and listeners [92, 193, 313, 80]. Our results add evidence for the effectiveness of this

approach in the shape domain.
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5.4 The ShepeGlot Dataset & Task

Hard context

Easy context

Figure 5.2: Constructing “hard” and “easy”
contexts by exploiting the latent shape sim-
ilarity of 3D chair point clouds. The bi-
colored node with cyan/orange marks a
canonical chair (with high in-degree in the
neighbor-graph). Cyan or orange-colored are
its selected distractors in each context type.

ShapeGlot consists of triplets of chairs coupled with

referential utterances that aim to distinguish one chair

(the ‘target’) from the remaining two (the ‘distrac-

tors’). To obtain such utterances, we paired partic-

ipants from Amazon’s Mechanical Turk (AMT) to

play an online reference game [98]. On each round of

the game the two players were shown the same triplet

of chairs. The designated target chair was privately

highlighted for one player (the ‘speaker’) who was

asked to send a message through a chat box such that

their partner (the ‘listener’) could successfully select

it. To ensure speakers used only shape-related infor-

mation, we scrambled the positions of the chairs for

each participant independently and used textureless,

uniform-color renderings of pre-aligned 3D CAD

models, taken from the same viewpoint. To ensure

that the communicative interaction was natural, no

constraints were placed on the chat box: referring expressions from the speaker were occasionally

followed by clarification questions from the listener or other discourse.

A key decision in building our dataset concerned the construction of contexts that would reliably

elicit diverse and potentially very fine-grained contrastive language. To achieve diversity we consid-

ered all ⇠7,000 chairs from ShapeNet. This object class is geometrically complex, highly diverse,

and abundant in the real world. To control the granularity of fine-grained distinctions that were

necessary in solving the communication task, we constructed two types of contexts: hard contexts

consisted of very similar shape-wise chairs, and easy contexts consisted of less similar chairs. To

measure shape-similarity in a scalable manner, we used the semantically rich latent space of the Point

Cloud-AutoEncoder (PC-AE) we presented in Chapter 2. We note, that point-clouds are an intrinsic

representation of a 3D object, oblique to color or texture. After extracting a 3D point-cloud from the

surface of each ShapeNet model we computed the underlying K-nearest-neighbor graph among all

models according to their PC-AE embedding distances. For a chair with sufficiently high-in degree

on this graph (corresponding intuitively to a canonical chair) we contrasted it with four distractors:
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“five slats straight back top”
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Figure 5.3: Baseline listener architecture combining 2D images, 3D point-clouds and linguistic
utterances.

the two closest to it in latent-space, and two that were sufficiently far (see Appendix C for details).

Last, we note that we counterbalanced the collected utterances, by considering every chair in a given

context as the context’s target (in different games).

Before we present our neural agents, we identify some distinctive properties of our corpus.

Human performance on the reference game was high, but listeners made significantly more errors in

the hard contexts (accuracy 94.2% vs. 97.2%, z = 13.54, p < 0.001). Also, in hard contexts longer

utterances were used to describe the targets (on average 8.4 words vs. 6.1, t = �35, p < 0.001). A

wide spectrum of descriptions was elicited, ranging from more holistic/categorical (e.g. ‘the rocking

chair’) common for easy contexts, to more complex and fine-grained language, (e.g. ‘thinner legs but

without armrests’) common for hard ones. Interestingly, 78% of the produced utterances contained at

least one part-related word: back, legs, seat, arms, or closely related synonyms e.g. armrests.

5.5 Building Neural Listeners for Shape-based Reasoning

Developing neural listeners that reason about shape-related properties is a key contribution of our

work. Below we conduct a detailed comparison between three distinct architectures, highlight the

effect of different regularization techniques, and investigate the merits of different representations

of 3D objects for the listening task, namely, 2D rendered images and 3D surface point clouds. In

what follows, we denote the three objects of a communication context as O = {o1, o2, o3}, the

corresponding word-tokenized utterance as U = u1, u2, . . . and as t 2 O the designated target.

Our proposed listener is inspired by [193]. It takes as input a (latent code) vector that captures
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shape information for each of the objects in O, and a (latent code) vector for each token of U ,

and outputs an object–utterance compatibility score L(oi, U) 2 [0, 1] for each input object. At its

core lies a multi-modal LSTM [106] that receives as initial input (“is grounded” with) the vector

corresponding to one object, processes the word-sequence U , and is read out by an MLP to yield a

single number (a compatibility score). This is repeated for each object, while sharing all network

parameters across the objects. The resulting three scores are soft-max normalized and compared to

the ground-truth indicator vector of the target, under the cross-entropy loss.*

Shape encoders We experiment with three representations to capture the shapes of the

underlying objects: (a) the bottleneck vector of a pretrained Point Cloud-AutoEncoder (PC-AE), (b)

the embedding provided by a convolutional network operating on single-view images of non-textured

3D objects, or (c) a combination of (a) and (b). Specifically, for (a) we use the PC-AE architecture

we introduced in Chapter 2 trained with single-class point clouds extracted from the surfaces of

3D CAD models, while for (b) we use the activations of the penultimate layer of a VGG-16 [251],

pre-trained on ImageNet [68], and fine-tuned on an 8-way classification task with images of objects

from ShapeNet. For each representation we project the corresponding latent code vector to the input

space of the LSTM using a fully connected (FC) layer with L2-norm weight regularization. While

there are many ways to incorporate image-based with point-cloud based features in the LSTM, we

found that the best performance occurs when we i) ground the LSTM with the image-based codes,

ii) concatenate the LSTM’s output (after processing U ) with the point cloud-based codes, and iii)

feed the concatenated result in a shallow MLP that produces the compatibility score (see Supp. for

a visual overview of the pipeline and more details). We note that proper regularization is critical:

adding dropout at the input layer of the LSTM and L2 weight regularization and dropout at and

before the FC projecting layers improves performance ⇠10%.

Incorporating context information Our baseline listener architecture (Baseline, just de-

scribed) first scores each object separately then applies softmax normalization to yield a score

distribution over the three objects. We also consider two alternative architectures that explicitly

encode information about the entire context before scoring a single object. The first alternative

(Early-Context), is identical to the proposed architecture, except for the codes used to ground the

LSTM. Specifically, if vi is the image-based code vector of the i-th object, instead of using vi

as the grounding vector for oi, a shallow convolutional network is introduced to create a more

complex (context-aware) feature. This network, of which the output is the grounding code for oi,

receives the signal f(vj , vk)||g(vj , vk)||vi, where f, g are the symmetric max/mean-pool functions,

*Architecture details and hyper-parameters for all the experiments, are provided in the Appendix C.
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|| denotes feature-wise concatenation and vj , vk are the codes of the remaining objects. Here, we

use symmetric functions to induce the orderless nature of our contexts. The second alternative

(Combined-Interpretation) inputs the image-based code vectors for all three objects sequentially to

the LSTM and then proceeds to process the tokens of U once, before yielding three scores. Similarly

to the Baseline architecture, point clouds are incorporated in both alternatives at the MLP operating

after the LSTM.

Word attention We hypothesized that a listener forced to prioritize a few tokens in each

utterance would learn to prioritize tokens that express properties that distinguish the target from the

distractors (and, thus, perform better). To test this hypothesis, we augment the listener models with a

standard bilinear attention mechanism [247]. Specifically, to estimate the ‘importance’ of each token

ui we compare the output of the LSTM when it inputs ui (denoting the output as ri); with the hidden

state after the entire utterance has been processed (denoted as h). The relative importance of each

token is ai =� rT
i

⇥ Watt ⇥ h, where Watt is a trainable diagonal matrix. The new (weighted) output

of the LSTM is:
P|U |

i=1 ri � âi, where âi = exp(ai)P|U|
j exp(aj)

and � is the point-wise product.

5.6 Listening Comprehension Experiments

Architecture Subpopulations
Overall Hard Easy Sup-Comp

Combined-Interpretation 75.9 ± 0.5% 67.4 ± 1.0% 83.8 ± 0.6% 74.4 ± 1.5%
Early-Context 79.4 ± 0.8% 70.1 ± 1.3% 88.1 ± 0.6% 75.6 ± 2.2%

Baseline 79.6 ± 0.8% 69.9 ± 1.3% 88.8 ± 0.4% 76.3 ± 1.3%

Table 5.1: Comparing different ways to include context. The simplest Baseline model performs
as well as more complex alternatives. Subpopulations are the subsets of test data containing: hard
contexts (shape-wise similar distractors), easy contexts, superlatives or comparatives.

We begin our evaluation of the proposed listeners using two reference tasks based on different

data splits. In the language generalization task, we test on target objects that were seen as targets

in at least one context during training but ensure that all utterances in the test split are from unseen

speakers. In the more challenging object generalization task, we restrict the set of objects that

appeared as targets in the test set to be disjoint from those in training such that all speakers and

objects in the test split are new. For each of these tasks, we evaluate choices of input modality and

word attention, using [80%, 10%, 10%] of the data, for training, validating and testing purposes.
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Figure 5.4: Examples of attention weights on human utterances. The listener’s LSTM appears to
learn attention weights that emphasize the more informative words disambiguating the referent. For
these results the Baseline listener is used and the attention-scores are extracted when the target object
is grounding the LSTM.
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Input
Modality

Language
Task

Object
Task

No
Attention

Point Cloud 67.6 ± 0.3% 66.4 ± 0.7%
Image 81.2 ± 0.5% 77.4 ± 0.7%
Both 83.1 ± 0.4% 78.9 ± 1.0%

With
Attention

Point Cloud 67.4 ± 0.3% 65.6 ± 1.4%
Image 81.7 ± 0.5% 77.6 ± 0.8%
Both 83.7 ± 0.3% 79.6 ± 0.8%

Table 5.2: Performance of the Baseline listener architecture using different object representations
and with/without word level attention, in two reference tasks.

Baseline listener accuracies are shown in Table 5.2.† Overall the Baseline achieves good

performance. As expected, the listeners have higher accuracy on the language generalization task

(3.2% on average). The attention mechanism on words yields a mild performance boost, as long as

images are part of the input. Interestingly, images provide a significantly better input than point-

clouds when only one modality is used. This may be due to the higher-frequency content of images

(we use point-clouds with only 2048 points), or the fact that VGG was pre-trained while the PC-AE

was not. However, we find significant gains in accuracy (4.1% on average) from exploiting the two

object representations simultaneously, implying a complementarity among them.

Next, we evaluate how the different approaches in incorporating context information described

in Section 5.5 affect listener performance. We focus on the more challenging object generalization

task, using listeners that include attention and both object modalities. We report the findings in

Table 5.1. We find that the Baseline and Early-Context models perform best overall, outperforming

the Combined-Interpretation model, which does not share weights across objects. This pattern

held for both hard and easy contexts of our dataset. We further explore the small portion (⇠14%)

of our test set that use explicitly contrastive language: superlatives (‘skinniest’) and comparatives

(‘skinnier’). Somewhat surprisingly we find that the Baseline architecture remains competitive

against the architectures with more explicit context information. The Baseline model thus achieves

high performance and is the most flexible (at test time it can be applied to arbitrary-sized contexts);

we focus on this architecture in the explorations below.
†In all results mean accuracies and standard errors across 5 random seeds are reported, to control for the data-split

populations and the initialization of the neural-network.
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5.6.1 Exploring learned representations

Linguistic ablations Which aspects of a sentence are most critical for our listener’s performance?

To inspect the properties of words receiving the most attention, we ran a part-of-speech tagger on

our corpus. We found that the highest attention weight is placed on nouns, controlling for the length

of the utterance. However, adjectives that modify nouns received more attention in hard contexts

(controlling for the average occurrence in each context), where nouns are often not sufficient to

disambiguate (see Fig. 5.5A). To more systematically evaluate the role of higher-attention tokens in

listener performance, we conducted an utterance lesioning experiment. For each utterance in our

dataset, we successively replaced words with the <UNK> token according to three schemes: (1) from

highest attention to lowest, (2) from lowest attention to highest, and (3) in random order. We then fed

these through an equivalent listener trained without attention. We found that up to 50% of words can

be removed without much performance degradation, but only if these are low attention words (see

Fig. 5.5B). Our word-attentive listener thus appears to rely on context-appropriate content words to

successfully disambiguate the referent.
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Figure 5.5: (A) The listener places more attention on adjectives in hard (orange) triplets than easy
(blue) ones. The histogram’s heights depict mean attention scores normalized by the length of the
underlying utterances; the error bars are bootstapped 95% confidence intervals. (B) Lesioning highest
attention words to lowest worsens performance more than lesioning random words or lesioning
lowest attention words.

Visual ablations To test the extent to which our listener is relying on the same semantic parts

of the object as humans, we next conducted a lesion experiment on the visual input. We took the

subset of our test set where (1) all chairs had complete part annotations available [308] and (2) the
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corresponding utterance mentioned a single part (17% of our test set). We then created lesioned

versions of all three objects on each trial by removing pixels of images (and/or points when point-

clouds are used), corresponding to parts according to two schemes: removing a single part or keeping

a single part. We did this either for the mentioned one, or another part, chosen at random. We report

listener accuracies on these lesioned objects in Table 5.3. We found that removing random parts hurts

the accuracy by 10.4% on average, but removing the mentioned part dropped accuracy more than

three times as much, nearly to chance. Conversely, keeping only the mentioned part while lesioning

the rest of the image merely drops accuracy by 10.6% while keeping a non-mentioned (random) part

alone brings accuracy down close to chance. In other words, on trials when participants depended on

information about a part to communicate the object to their partner, we found that visual information

about that part was both necessary and sufficient for the performance of our listener model.

Single Part
Lesioned

Single Part
Present

Mentioned Part 42.8% ± 2.3 66.8% ± 1.4
Random Part 67.0% ± 2.9 38.8% ± 2.0

Table 5.3: Evaluating the part-awareness of neural listeners by lesioning object parts. Results shown
are for image-only listeners, with average accuracy of 77.4% when intact objects are used. Similar
findings regarding point-cloud-based listeners are provided in the Appendix C.

5.7 Building Pragmatic Neural Speakers for Shape Reference

5.8 Neural Speakers

Architecture Next, we explore models that learn to generate an utterance that refers to the target

and which distinguishes it from the distractors. Similarly to a neural listener the heart of these

(speaker) models is an LSTM which encodes the objects of a communication context, and then

decodes an utterance. Specifically, for an image-based speaker, on the first three time steps, the

LSTM input is the VGG code of each object. Correspondingly, for a point-cloud-based speaker, the

LSTM’s initial input is the object codes extracted from a PC-AE. During training and after the object

codes are processes by the LSTM, the LSTM receives sequentially the i-th utterance token, while at

its output if forced to predict the (i + 1)-th token (i.e. we use teacher-force [288]). For these models

we feed the target object always last (third), eliminating the need to represent an index indicating the

target’s position. To find the best model hyper-parameters (e.g. L2-weights, dropout-rate and # of
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LSTM neurons) and the optimal amount of training, we sample synthetic utterances from the model

during training and use a pretrained listener to select the result with the highest listener accuracy.

We found this approach to produce results that yield better quality utterances than evaluating with

listening-unaware metrics like BLEU [204].

Variations The above (literal) speakers can learn to generate language that discriminates targets

from distractors. To test the degree to which distractor objects are used for this purpose, we

experimented with context-unaware speakers that were provided with the latent code of the target

only, (and are otherwise identical to the above literal models). Furthermore, and motivated by

the recursive social reasoning characteristic of human pragmatic language use (as formalized in

the Rational Speech Act framework [88]), we created pragmatic speakers that choose utterances

according to their capacity to be discriminative, as judged by a pretrained ‘internal’ listener. In this

case, we sample utterances from the (literal) speakers, but score (i.e. re-rank) them with:

� log(PL(t|U, O)) +
(1 � �)

|U |↵ log(PS(U |O, t)), (5.1)

where PL is the listener’s probability to predict the target (t) and PS is the likelihood of the literal

speaker to generate U . The parameter ↵ controls a length-penalty term to discourage short sentences

[291], while � controls the relative importance of the speaker’s vs. the listener’s opinions.

5.9 Speaker Experiments

Qualitatively, our speakers produce good object descriptions, see Fig. 5.6 for examples, with the prag-

matic speakers yielding more discriminating utterances.‡ To quantitatively evaluate the speakers we

measured their success in reference games with two different kinds of partners: with independently-

trained neural listeners and with human listeners. To conduct a fair study when we used a neural

listener for evaluations, we split the training data in half. The evaluating listener was trained using

one half, while the ‘internal’ listener used by the pragmatic speaker was trained on the remaining

half. For the human-based evaluations, we first used the literal and pragmatic variants to generate

an utterance for every context of the test split of the object-generalization task (which contains

1200 unique contexts). We then showed the resulting utterances to participants recruited with AMT

and asked them to select the object from context that the speaker was referring to. We collected
‡The project’s webpage contains additional qualitative results.
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the one with the circle on the bottom

it has rollers on the feet

the chair with the thin-est legs

square back, straight legspragmatic speaker

distractors

0.55 0.16 0.29

0.29 0.20 0.51

0.19 0.32 0.49

0.00 0.14 0.86

target

literal speaker

listener scores

listener scores

distractors target distractors target

the one with the thick-est legs

0.05 0.85 0.10

thin-est seat
0.19 0.24 0.57

Figure 5.6: Pragmatic vs. literal speakers in unseen (‘hard’) contexts. The pragmatic generations
successfully discern the target even in cases where the literal generations fail. The left and center
contexts (gray-color) are used by image-based speakers/listeners, and the right-most by point-cloud-
based ones. The utterances are color-coded according to the attention placed by a separate evaluating
neural listener whose classification scores are shown above each corresponding utterance.

approximately 2.2 responses for each context. Here, we used the synthetic utterances with the highest

scores (Eq. 5.1) from each model, with optimal (per-validation) ↵ and an ‘aggressive’ � = 1.0. We

note that while the point-based speakers operate solely with 3D point-clouds, we sent their generated

utterances to AMT coupled with CAD rendered images, so as to keep the visual (AMT-human)

presentation identical across the two variants.

Table 5.4: Evaluating neural speakers operating with 3D point-cloud or image-based object represen-
tations, across architectural variants.

Speaker
Architecture Modality Neural

Listener
Human
Listener

Context
Unaware

Point Cloud
Image

59.1 ± 2.0%
64.0 ± 1.7%

-
-

Literal Point Cloud
Image

71.5 ±1.3%
76.6 ± 1.0%

66.2
68.3

Pragmatic Point Cloud
Image

90.3 ±1.3%
92.2 ±0.5%

69.4
78.7

We found (see Table 5.4) that our pragmatic speakers perform best with both neural and hu-

man partners. While their success with the neural listener model may be unsurprising, given the

architectural similarity of the internal listener and the evaluating listener, human listeners were

10.4 percentage points better at picking out the target on utterances produced by the pragmatic

vs. literal speaker for the best-performing (image-based) variant. Similar to what we saw in the

listener experiments (Section 5.6), we found that (sole) point-cloud-based speakers achieve lower

performance than image-based variants. However, we also found an asymmetry between the listening
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distractors target

gap between the back and the seat

distractors target distractors target

circular arm reststwo legs connected

the bed has a fancy metal 
headboard and two pillows

0.06 0.02 0.92

very narrow and tall rectangular 
table with four tapered legs

0.06 0.07 0.87
listener scores:

targetdistractors targetdistractors targetdistractors

this lamp is wire mesh

0.01 0.02 0.97

Figure 5.7: Examples of out-of-distribution neural speaking and listening. Top row: model gen-
erations for real-world catalogue images. The speaker successfully describes fine grained shape
differences on images with rich color and texture content; two factors not present in the training data.
Bottom row: results of applying a word-attentive listener on renderings of CAD objects from unseen
classes with human-produced utterances. The listener can detect the (often localized) visual cues that
humans refer to, despite the large visual discrepancy of these objects from the training-domain of
chairs. (The utterances are color coded according to the attention placed to them by the attentive
neural listener.)

and speaking tasks: while context-unaware (Baseline) listeners achieved high performance, we found

that context-unaware speakers fare significantly worse than context-aware ones. Last, we note that

both literal and pragmatic speakers produce succinct descriptions (average sentence length 4.21 vs.

4.97) but the pragmatic speakers use a much richer vocabulary (14% more unique nouns and 33%

more unique adjectives, after controlling for average length discrepancy).

5.10 Out-of-distribution Transfer Learning

Language is abstract and compositional. These properties make language use generalizable to new

situations (e.g. using concrete language in novel scientific domains) and robust to low-level perceptual

variation (e.g. lighting). In our final set of experiments we examine the degree to which our neural

listeners and speakers learn representations that are correspondingly robust: that capture associations

between the visual and the linguistic domains that permit generalization out of the training domain.
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Understanding out-of-class reference To test the generalization of listeners to novel stimuli, we

collected referring expressions in communication contexts made of objects in ShapeNet drawn

from new classes: beds, lamps, sofas and tables. These classes are distinct from chairs, but share

some parts and properties, making transfer possible for a sufficiently compositional model. For

each of these classes we created 200 contexts made of random triplets of objects; and collected 2

referring expressions for each target in each context (from participants on AMT). Examples of visual

stimuli and collected utterances are shown in Fig. 5.7 (bottom-row). To this data, we applied an

(image-only, with/without-attention) listener trained on the ShapeGlot (i.e. chairs) data. We avoid

using point-clouds since unlike VGG which was finetuned with multiple ShapeNet classes, the

PC-AE was pre-trained on a single-class.

As shown in Table 5.5, the average accuracy is well above chance in all transfer categories (56%

on average). Moreover, constraining the evaluation to utterances that contain only words that are in

the ShapeGlot training vocabulary (75% of all utterances, column: known) only slightly improves the

results. This is likely because utterances with unknown words still contain enough known vocabulary

for the model to determine meaning. We further dissect the known population into utterances that

contain part-related words (with-part) and their complement (without-part). For the training domain

of chairs without-part utterances yield slightly higher accuracy. However the useful subcategories

that support this performance (e.g. ‘recliner’) do not support transfer to new categories. Indeed, we

observe that for transfer classes the listener performs better when part-related words are present.

Furthermore, the performance gap between the two populations appears to become larger as the

perceptual distance between the transfer and training domains increases (compare sofas to lamps).

Describing real images Transfer from synthetic data to real data is often difficult for modern

machine learning models, that are attuned to subtle statistics of the data. We explored the ability of

our models to transfer to real chair images (rather than the training images which were rendered

without color or texture from CAD models) by curating a modest-sized (300) collection of chair

images from online furniture catalogs. These images were taken from a similar view-point to that

of the training renderings and have rich color and texture content. We applied the (image-only)

pragmatic speaker to these images, after subtracting the average ImageNet RGB values (i.e. before

passing the images to VGG). Examples of the speaker’s productions are shown in Figure 5.7. For

each chair, we randomly selected two distractors and asked 2 AMT participants to guess the target

given the (highest-scoring) utterance produced by our speaker. Human listeners correctly guessed
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Table 5.5: Transfer-learning of neural listeners trained with chair data to novel object classes for
different sub-populations of utterances. For reference, the accuracies of the object generalization
task are included (chairs, first row); The last row reports the average of the transfer/novel categories
only. All numbers are average accuracies of five listeners trained with different splits of the object
generalization task (See Section 5.10 for details, and Appendix C for other variants.).

Population
Class entire known with part without part

chair 77.4 77.8 77.0 80.5

bed 56.4 55.8 63.8 51.5
lamp 50.1 51.9 60.3 47.1
sofa 53.6 55.0 55.1 54.7
table 63.7 65.5 68.3 62.7
average 56.0 57.1 61.9 54.9

the target chair 70.1% of the time. Our speaker appears to transfer successfully to real images, which

contain color, texture, pose variation, and likely other differences from our training data.

5.11 Conclusion

In this chapter, we have explored models of natural language grounded in the shape of common

objects. The geometry and topology of objects can be complex and the language we have for

referring to them is correspondingly abstract and compositional. This makes the shape of objects

an ideal domain for exploring grounded language learning, while making language an especially

intriguing source of evidence for shape variations. We introduced the ShapeGlot corpus of highly

descriptive referring expressions for shapes in context. Using this data we investigated a variety

of neural listener and speaker models, finding that the best variants exhibited strong performance.

These models draw on both 2D and 3D object representations and appear to reflect human-like part

decomposition, though they were never explicitly trained with object parts. Finally, we found that

the learned models are surprisingly robust, transferring to real images and to new classes of objects.

Future work will be required to understand the transfer abilities of these models and how this depends

on the compositional structure they have learned.



Chapter 6

Referential Language for Object
Discrimination in the Real-World

In this final chapter of the thesis we extend the problem of language-driven shape-differentiation

presented in the previous chapter (Chapter 5) to a more complex scenario. Specifically, in this

chapter we study the problem of learning language-driven object-differentiation for common objects

in real-world 3D scenes. This is a strictly harder problem, as reference of objects inside real-world

scenes, does not involve only shape-based reasoning, but it extends to other object-properties such

as their texture or spatial location. Concretely, in this study we focus on a challenging setup where

the referred object belongs to a fine-grained object class and the underlying scene contains multiple

object instances of that class. Due to the scarcity and unsuitability of existent 3D-oriented linguistic

resources for this task, we first develop two large-scale and complementary visio-linguistic datasets:

i) Sr3D, which contains 83.5K template-based utterances leveraging spatial relations among fine-

grained object classes to localize a referred object in a scene, and ii) Nr3D, which contains 41.5K

natural, free-form utterances collected by deploying a 2-player object reference game in 3D scenes.

Using utterances of either datasets, human listeners can recognize the referred object with high

(>86%, 92% resp.) accuracy. By tapping on the introduced data, we develop novel neural listeners
that can comprehend object-centric natural language and identify the referred object directly in a

3D scene. Our key technical contribution is designing an approach for combining linguistic and

geometric information (in the form of 3D point clouds similar to those used in Chapter 2) and creating

multi-modal 3D neural listeners (similar to those explored in Chapter 5). Crucially, we show that

architectures which promote object-to-object communication via graph neural networks outperform

less context-aware alternatives, and that fine-grained object classification is a hard bottleneck for

93
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language-assisted 3D object identification.

6.1 Introduction

1. “The chair closest to the door.”
2. “The chair under the chalkboard.”

1. “The office chair that is green.”
2. “Choose the brown office chair 

pushed under the desk.”

1
2

1 2

Figure 6.1: Examples of discriminative utterances and context formation in a 3D scene. Four
chairs in the same scene are contrasted in pairs. The contrasted chairs are of plain type on the left
panel, and in the right panel, they are office-type chairs. Each color-coded utterance distinguishes the
‘target’ object inside the same colored bounding box against a ‘distractor’ of the same fine-grained
class. The use of a communication context that includes all but only those objects of the same
fine-grained type lifts the reference problem beyond fine-grained classification.

The progress on connecting language and vision in the past decade has rekindled interest in tasks

like visual question answering (e.g., [18, 228]), image captioning (e.g., [123, 278, 302, 178, 10]),

and sentence-to-image similarity (e.g., [123, 134]). Recent works have enhanced the accessibility of

visual content through language via grounding (e.g., [212, 211]), showing strong results in locating

linguistically described visual elements in images. However, most of these works focus on developing

better models that connect vision to language in images, which express after all only a 2D view

of our 3D reality. Even in embodied AI most works (e.g., embodied QA [65], or embodied visual

recognition [303]), fine-grained 3D object identification is not explicitly modeled. Fine-grained 3D

understanding however can be essential to more 3D-oriented visually-grounded embodied tasks,

such as those that need to be performed by autonomous robotic agents [295, 241]. Representing

the 3D shape of objects can also enable the inference and instantiation of geometric constraints for

multi-step planning of manipulation of objects in the physical world [208], potentially increasing
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the generalization power of robotics in ecological real-world human environments.

Humans possess an astonishing capacity to reason about, describe, and locate 3D objects. Over

time we have developed efficient communication protocols to linguistically express such processes –

e.g., given the utterance “the laptop placed on the table next to the main door”, one can identify

the referred object in the room, as long as the reference conveys some unique aspect of that object.

Solving such a reference problem directly in 3D space – i.e., without a camera view dependency –

can benefit many downstream robotics applications, including embodied question answering [65],

visual- and language-based navigation [14], instruction following [248], and manipulating objects in

a scene [297, 154]. Despite this, developing datasets and methods with characteristics that enable

machine learning models to perform well on this 3D reference task is far from straightforward; in

this work, we examine how to address both.

Leveraging 3D visual understanding for solving vision and language tasks has been recently

explored in Visual Question Answering [142] and Visual Grounding [215]. Still, the focus has

been on synthetic datasets without 3D understanding going beyond (at best) multiple 2D views.

An alternative, yet more direct way to gain this understanding is by analyzing point cloud data of

real-world scenes [6, 222]. Point clouds carry the entire geometric and appearance characteristics of

objects and provide access to a larger spatial context (within a scene) than a single 2D view [20].

This flexibility enables us also to bypass camera view dependency (e.g., having access to parts of a

scene occluded by a fixed camera) when we refer linguistically to objects.

In this Chapter, we investigate object references when multiple instances of the same fine-grained

object class are present in a 3D scene. Discriminative understanding of object classes is important at

the fine-grained level and can be achieved with models combining appearance understanding and

spatial reasoning skills (e.g., spatial understanding is not critical by itself if we are looking for the

unique office chair in the presence of one or more dining chair(s)). Creating discriminative linguistic
descriptions: We focus on designing a data collection strategy that covers both spatial and appearance

based identification (Sec. 6.3). As we show in our experiments, this step is critical for progress in

3D visual object identification from free-form language descriptions. Our strategy involves both

programmatic and human-based generation of utterances, and has the following characteristics: (i) in

every single example there are multiple object instances of the same class referred in the language

describing the target 3D object; (ii) in the case of human language utterances, we explicitly ask the

human subject to describe a target object in contrast to other instances of the same object class. By

explicitly contrasting the same fine-grained class instances and only them, the resulting utterances are

discriminative, even if uttered by crowd-sourced annotators unfamiliar with the environment. Fig. 6.1
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illustrates examples of this. Developing a 3D neural listener: We also design a novel visio-linguistic

graph-convolution network that predicts the referred object given a language description, by enabling

communication among objects in a 3D visual scene. Our contributions can be summarized below:

1. Fine-Grained ReferIt3D task: We introduce the task of language-based identification of

specific 3D object instances, where fine-grained object-centric and multi-object understanding

is necessary for its completion.

2. Nr3D and Sr3D datasets: We contribute a new dataset that contains natural and synthetic

language descriptions, namely Nr3D and Sr3D respectively. For Sr3D we propose a simple

but effective methodology for building template-based and spatially-oriented object referential

language in 3D scenes. We show that training with Sr3D in addition to natural language data

(Nr3D or [54]) improves neural-based pipelines.

3. ReferIt3DNet: We explore the task of understanding object references grounded in real-world

3D data (including both language and scenes) by designing a novel visio-linguistic graph

neural network, termed ReferIt3DNet*.

6.2 Related Work

2D High-Level Vision & Language: Vision & Language, also sometimes called Visual Semantic

modeling, has been extensively studied in a variety of 2D tasks. Among early approaches of combin-

ing Vision & Semantics are tasks such as zero-shot learning where language/unseen descriptions of

an unseen class are provided to describe it (e.g., [304, 150, 11, 232, 254, 166, 165, 270]). Similar

approaches have been developed to model image-sentence similarity for bi-directional retrieval of

images given a sentence (e.g., [123, 134]). More recently, the development of a large scale dataset

of 2D Visual Question answering (VQA) [18] enabled new approaches on how to best represent

questions and images for this task. However, a noteworthy dataset-based bias was found: just

by inspecting the question/language and without necessarily understanding the visual content, the

predictive performance of many models was found to be superficially high [9]. The same bias was

shown in tasks such as image-captioning [72]. More balanced VQA benchmarks [91] mitigated

some of the biases and motivated the development of better attention mechanisms (e.g., [128]) and

modular networks [315, 16]. As per the example set by 2D Vision and Language community, prop-

erly modeling 3D visio-lingual tasks requires establishing carefully designed connections between
*The datasets and neural listener code are available at https://referit3d.github.io

https://referit3d.github.io
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language and the 3D visual data, e.g., as these encoded with 3D point clouds.

2D ReferIt Game and Grounded Vision & Language: Several papers explore connecting referen-

tial language to image regions for co-reference resolution (e.g., [135, 226] – in videos, e.g., [12]),

for generating referring expressions [126, 188, 182], and more. Recent work grounds noun phrases

in image captions, such as in Flickr30KEntities [212] and ActivityNetEntities [322] in videos. In

[74, 182], the authors proposed the use of referring expressions for human-robot interaction and

object localization in real-word environments but using primarily 2D images in contrast to our work.

Visual Relationships and Spatial Reasoning: Detecting visual relationships in images such as

<woman, carrying, umbrella> (e.g., [168, 2]) has been explored using datasets such as

VRD [168] and more recently on the large Visual Genome dataset [138]. Spatial relations have also

been studied in 3D by Rosema et al. [235]. However, relations in that work are not described in free

form and hence are of restricted vocabulary. Also, the goal in [235] is simpler than identifying a

target object in a complex 3D environment (our goal).

3D Vision & Language: Connecting 3D vision to natural language is a relatively understudied

problem. Within a generative framework, [50] presented conditional generation of 3D models from

text, which could be useful in augmented reality applications. In a concurrent work [54], Chen et

al., collected natural language to localize referred objects in 3D real-world scenes. Also, in a recent

work, Goyal et al. collected natural language for minimally contrasting synthetic 3D scenes with a

focus on spatial-relations [90]. In contrast to these works, we assume the segmented object instances

of a real-world scene and focus on identifying a referred object when other instances with the same

fine-grained object category exist.

Reference Games. Our 41,503 human language utterances were collected via a reference game

played between two humans, as inspired by the 2D, image-oriented ReferItGame [126] and the 3D,

shape-oriented, ShapeGlot [7]. The basic arrangement of such games can be traced back to the

language games explored by Wittgenstein [289] and Lewis [153]. Recently, these approaches have

also been adopted as a benchmark for discriminative and context-aware NLP [203, 15, 193, 58, 276,

259, 148]. Our paper goes beyond this prior work by grounding language behavior in a reference

task containing objects in real-world 3D scenes, thereby eliciting rich referential language influenced

by the color, the shape, the relative-spatial location, and other properties of the underlying objects.
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6.3 Developing Referential 3D-Centric Data

The problem of language driven disambiguation of common objects in real world 3D scenes is

new, and as such, not many datasets exist that are well suited for this task. With this in mind we

introduce a two-part dataset: a high quality synthetic dataset of referential utterances (Sr3D) and a

dataset with natural (human) referential utterances (Nr3D). Both Sr3D and Nr3D are built on top

of ScanNet [63], a real-world 3D scene dataset with extensive semantic annotations that we utilize

to create appropriate contrastive communication contexts. We define communication context as

a (scene, target, distractor(s)) tuple, where scene is one of the 707 unique indoor

scenes of ScanNet, target is one of 76 fine-grained object classes (e.g., office-chairs, armchairs, etc.),

and distractors are instances of the same fine-grained object class as the target that are contained in the

same scene. We generate a total of 5,878 unique tuples. We select the 76 object classes by applying

the following intuitive criteria. A class is a valid class for a target if: (a) it is contained in at least 5

scenes; and (b) each scene contains multiple distractors but not more than six (to promote a problem

beyond fine-grained (FG) classification without making it too hard even for human annotators). We

add the constraint of having 5 such scenes per class, to foster generalization and make the problem

less heavy-tailed (15.26% of all annotated ScanNet classes appear with multiple instances in exactly

one scene). We also exclude the few classes that are object parts (e.g. a door of a closet) or are

structural elements of the scenes (i.e., walls, floors, and ceiling) to ensure that we are working with

common objects.

6.3.1 Creating template based spatial references

We introduce the Spatial Reference in 3D (Sr3D) dataset, consisting of 83,572 utterances. Each

utterance aims to uniquely refer to a target object in a ScanNet 3D scene by defining a relationship

between the target and a surrounding object (anchor). Anchors are object instances that can belong

to a set of 100 object classes in ScanNet, comprising of the 76 mentioned above and an additional 24

that: (a) frequently appear as singletons in a scene; and (b) are large objects (e.g., a fireplace or a TV).

However, an anchor can never belong to the same class as the target and, as such, its distractors.

Consider, for instance, an underlying 3D scene with a target object (e.g. desk) that can be

completely disambiguated from its distractors with the help of a spatial relation (e.g., closest) to

an anchor object (e.g., door). We synthesize discriminative Sr3D utterances using the following

compositional template:
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Figure 6.2: Examples of spatial reference types of Sr3D. In the left image, there are examples
of “horizontal proximity”, “between”, and “support” relations; the target object in the first two is
an armchair and the target in the third relation is a table. In the right image, there are examples
of “vertical proximity” and “allocentric” relations; the target objects are an armchair and a table
respectively. The left and the right images represent a ScanNet scene where there exist two armchairs
(one is beside the refrigerator and the other under the bulletin board) and three tables (a black one
under the bulletin board, one in front of the couch, and one in the corner of the room).

< target-class > < spatial-relation > < anchor-class(es) > (6.1)

e.g., “the desk that is closest to the door”. Per (6.1), the Sr3D template consists of three placeholders.

Our goal is to find combinations of them that can uniquely characterize target objects among their

distractors in their scenes.

We define the following five types of spatial object-to-object relations. For more details we refer

the reader to Table 6.1 for a summary of statistics and to the Appendix D.

(i) Horizontal Proximity: This type indicates how close/far is a target from the anchors in the

scene (Fig. 6.2, i). It applies to distance on the horizontal placement of the objects.

(ii) Vertical Proximity: It indicates that the target is either above or below the anchor (Fig. 6.2,
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ii).

(iii) Between: Between relations indicate the existence of a target between two anchors (Fig. 6.2,

iii).

(iv) Allocentric: Allocentric relations encode information about the location of the target with

respect to the intrinsic self-orientation of an anchor (Fig. 6.2, iv). To define the aforementioned

orientation, we need to know; (a) the orientated bounding boxes of the anchor and (b) whether

the anchor has an intrinsic front (e.g., a chair with a back) or not (e.g., a stool). For (a) we

utilized the Scan2CAD [23] annotations that provide 9DOF alignments between ShapeNet

models and ScanNet objects, and for (b) we used a combination of PartNet’s [192] and manual

annotations.

(v) Support: Support relations indicate that the target is either supported by or supporting the

anchor (Fig. 6.2, v).

Table 6.1: Statistics of Sr3D. The first row contains the number of distinct communication contexts
yielded by each reference-type. The second row contains the number of programmatically generated
utterances. Please note that communication context in the Sr3D setup also takes into account spatial
relationships and anchors.

Relationship Horizontal Prox. Vertical Prox. Support Allocentric Between All
|Context| 34,001 1,589 747 1,880 3,569 41,786

|Utterances| 68,002 3,178 1,494 3,760 7,138 83,572

Discussion Our protocol for generating Sr3D is simple but also effective:

• A user study conducted in Amazon Mechanical Turk (AMT) revealed that 86.1% of the time,

humans guessed correctly the target when provided with a sampled utterance of Sr3D (2K

samples, p<0.001).

• As shown in Sec. 6.5, Sr3D allows us to investigate the reference problem in a more controlled

manner than Nr3D, by providing a homogeneous vocabulary and a specific type of reasoning.

For example, it bypasses color- or shape- based reference, and other complicated factual

reasoning (e.g., use of brand names or metaphors).



6.3. DEVELOPING REFERENTIAL 3D-CENTRIC DATA 101

Sr3D+: In addition to the dataset generation described above, we augment Sr3D with more

utterances choosing the target object’s class among those that do not comply with the criterion of

having more than one distractors in the scene. Given the synthetic nature of the data, we can generate

a large amount of utterances in a cost-free way. We explore the contribution of Sr3D+ to the final

performance of our neural listener in Sec. 6.5. This additional set of data will be particularly useful

when comparing our method to the Unique setting of [54] (Table 6.4), since it assumes that the target

object is the only instance of that class in the scene.

6.3.2 Natural reference in 3D scenes

The Natural Reference in 3D (Nr3D) dataset contains 41,503 human utterances collected by deploy-

ing an online reference game in AMT. The game is played between two humans: a ‘speaker’ who was

asked to describe a designated target object in a ScanNet 3D scene and a ‘listener’ who, given the

speaker’s utterance,

Figure 6.3: Object properties used in sentences
of Nr3D (histogram).

was asked to select the referred object among its

distractors. The game is structured such that both

‘speaker’ and ‘listener’ are rewarded when the tar-

get is successfully selected, hence incentivising

descriptions that are most discriminative in the

context of a scene and a general audience.

Both players are shown the same 3D scene

in the form of a decimated mesh model and can

interact with it through a 3D interface. In order

to remove any camera view bias, we initialize the

‘speaker’ and ‘listener’ 3D interfaces with differ-

ent randomized camera parameters. Given the

specifics of the task and the difficulty of understanding the depicted 3D real-world visual content by

the non-expert players, we highlight with bounding boxes (oriented when available) the target and

distractors. We distinguish them for the ‘speaker’ with red and green color respectively, whereas

for the ‘listener’ there is no distinction among them. To encourage players to explore the scene

and familiarize themselves with all highlighted objects, we also provide them with a total count of

bounding boxes they should expect in the scene. For an example of the speaker’s interface we refer

the reader to Fig. 1 in Appendix D.

We collect at least 7 utterances from different player pairs per target object. During the collection
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process, we iterate over all object instances with the same fine-grained object class in a scene (e.g.,

all 6 sofa chairs Fig. 1 in Appendix D), providing to the dataset a symmetric property. Among the

collected utterances, some originate from games with unsuccessful results; these are not used for

training/learning purposes.

Discussion Before presenting our neural agents, we identify several important properties of Nr3D:

• Performance in the gamified data collection process was high (92.2%), but ‘listeners’ made

significantly more errors in the more challenging “hard” contexts (90.0% vs. 94.7%, z = 17.5,

p<0.001). We define “hard” contexts as those 3D scenes that contain more than 2 distractors

(Fig. 6.5 illustrates examples of “hard” vs. “easy”).

• Speakers naturally produced longer utterances on average to describe targets in hard contexts

(approximately 12.5 words vs 10.2, t=-35, p<0.001). The average number of words across all

utterances (ignoring punctuation) is 11.4 and the median is 10.

• Regardless of the context difficulty, we identified two attributes in the descriptive power of the

utterances (Fig. 6.5): (a) the target is scene-discoverable when it is uniquely distinguishable

among objects in the entire scene and not only its distractors. The majority of the utterances

mention the fine-grained class type or a close synonym of the target (91.6%). This naturally

emerging property of Nr3D allows us to identify the target among all objects in the room;

and (b) the identification of the target is view-independent thus not requiring the observer

to place themselves into the scene facing certain objects. Although this attribute is not as

prominent as the previous one (63%), even in the case that there is view dependency, speakers

were instructed to guide the listeners on how to place themselves in the scene.

• The use of spatial prepositions is ubiquitous (90.5%), which exemplifies why Sr3D is relevant.

Reference to color and shape properties is drastically less used in distinguishing instances of

the same fine-grained object class. Fig. 6.3 shows a histogram reflecting how often different

types of object properties are used accross all sentences of Nr3D.

6.4 Developing 3D Neural Listeners

Given a 3D scene S represented as an RGB-colored point-cloud of N points S 2 RN⇥6 and a

word-tokenized utterance U = {u1, . . . , ut} we want to build a neural listener that can identify the
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referred target object T ⇢ S. To this end, we assume access to a partition of S = {O1, . . . , OM}
that represents the objects (Oi) present in S. While it is feasible to attempt identification (or more

precisely, in this case, object localization) by operating directly on the unstructured S ([218], [54]),

the problem of instance localization (especially for FG classes) remains vastly unsolved. To overcome

this and decouple the 3D instance-segmentation problem from our referential setting, we assume

access to the instance-level object segmentations of the underlying scene. This choice allows us to

cast the 3D reference problem into a classification problem that aims to predict the referred “target”

among M segmented 3D instances.

While the above assumption eliminates the need to define each object in S, it still leaves open

the problems of: (i) FG object classification; (ii) recognition of the referred object class (per the
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Figure 6.4: The ReferIt3DNet neural listener. Each object of a 3D scene, represented as a 6D point
cloud containing its xyz coordinates and RGB color, is encoded by a visual encoder (e.g., Point-
Net++), with shared weights. Simultaneously, the utterance describing the referred object (e.g., “the
armchair next to the whiteboard”) is processed by a Recurrent Neural Network (RNN). The resulting
representations are fused together and processed by a Dynamic Graph Convolution Network (DGCN)
which creates an object-centric and scene- (context-) aware representation per object. The output of
the DGCN is processed by an MLP classifier that estimates the likelihood of each object to be the
referred one. Two auxiliary losses modulate the unfused representations before these are processed
by the DGCN via an FG object-class classifier and a referential-text classifier respectively (Lfg and
Ltext – see text for details).
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utterance); and (iii) the original problem of selecting the referred object among the m options. For

the first two tasks, we experiment with a neural listener that utilizes two auxiliary cross-entropy

losses (Lfg, Ltext) aimed to decouple these intrinsic aspects of the original task. Specifically, the

two losses are added to the cross-entropy loss of the main task in hand (Lref ) making a final loss

that is a weighted sum of these terms:

Ltotal = ↵1Lfg + ↵2Ltext + Lref

Contextual scene understanding The above design is object-aware, but our underlying task is also

scene-oriented and heavily relies on the configuration of the objects present in a scene. Because of

this reason it is important to provide a neural listener with a signal that contains explicit information

about the scene it operates. A baseline that we explored to this end, is to create a PointNet++

hierarchical scene-feature (based on a large number of points of S) which we fused with every visual

representation extracted independently for each object Oi. While the resulting representation is

simultaneously object-centric and scene-aware it is not taking into account explicit object-to-object

interactions. A more sophisticated approach – which is part of the ReferIt3DNet – uses a structured

and explicit way of capturing object-to-object interactions to provide information about the scene.

Specifically, we use a dynamic graph-convolutional network (DGCN) [285] that operates on the

visual features of the objects present in a scene (the object are nodes of a graph). The edges of this

graph are computed dynamically at each layer of the DGCN according to the Euclidean similarity

among the updated (per-node) visual features. In our experiments we use the k-nearest neighbor-

graph among the nodes (k = 7, chosen per validation). We note that k = 7 creates a relatively sparse

graph (the 90th percentile of the number of objects in the training scenes is 52). For further details

we refer the reader to the Appendix D.

Incorporation of language An important decision regards how one should “fuse” the linguistic

signal in a pipeline like the above. Despite a chair being visually different from a door, our graph-

network should inspect the relation among these objects, especially when the reference requires

it (e.g., “the chair close to the door”). To promote this action we fuse the visual (object) features

with the linguistic ones (derived by an RNN) before we pass them to the DGCN. We also explore

the effect of adding the linguistic features after the DGCN and in both places – which is the best

performing option. An overview of our pipeline is illustrated in Fig. 6.4.
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Hard contextEasy context
VI SD

“The lamp closer to the white armchair.”   

“Looking at bed, the one on the left.”

VI SD
“Closest to the person with the green shirt.”

“The lamp on the right in between the beds.”

Figure 6.5: Key properties of referential language and contexts in 3D environments. First, is
the reference being made within a communication context that is “Easy” containing only a few
distractors (left image) or “Hard” (right image)? Second, is the utterance permitting a navigating
agent to discover the target among all objects of the scene, making it Scene-Discoverable (SD)?
Note, that by construction of the communication contexts of Nr3D, if the utterance can disambiguate
among the fine-grained distractors, and also mentions the target’s object class (or a synonym) it is
SD. Third, does the reference rely on the listening agent to consider a specific/narrow view-point of
the scene (e.g., “Looking at (the front of) the bed...”), or the description makes the target identifiable
from several views, i.e., is View-Independent (VI)?

6.5 Experiments & Analysis

We explore different listening architectures † and report the listening accuracy; each test utterance

receives a binary score (1 if the correct object is predicted as target and 0 otherwise). For all

experiments we use the official-ScanNet splits.

1. Decoupled approach: This is a baseline listener consisting of a text classifier and an (FG)

object classifier that are trained separately. Given an utterance we use the text classifier to

predict the referred object-class. Then we select uniformly i.i.d. (and output) an object from

Oi 2 S for which the object classifier matches the text-based prediction. We note that in

Nr3D (Sr3D) test accuracies for the two classifiers are 93.0% (100.0%) and 64.7% (67.4%),

indicating a noticeable asymmetry in the difficulty of solving the two tasks.

2. Vision + Language, no Context (V + L): Inspired by context-free listening architectures

like those in [7, 193], we ground an RNN with the visual feature of each object of Oi 2 S,

independently, and use a shallow classifier to predict the likelihood of each Oi for being the
†Architecture details and hyper-parameters for all the experiments, are provided in the Appendix D.
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Table 6.2: ReferIt3DNet performance on Nr3D with/out Sr3D. The first row contains the achieved
accuracy on the Nr3D testing data for a listener trained solely with the Nr3D training set; the other
rows showcase the effect of training simultaneously with the Sr3D/Sr3D+, respectively.

Overall Easy Hard View-dep. View-indep.
Nr3D 35.6%±0.7% 43.6%±0.8% 27.9%±0.7% 32.5%±0.7% 37.1%±0.8%

w/ Sr3D 37.2%±0.3% 44.0%±0.6% 30.6%±0.3% 33.3%±0.6% 39.1%±0.2%
w/ Sr3D+ 37.6%±0.4% 45.4%±0.6% 30.0%±0.4% 33.1%±0.5% 39.8%±0.4%

referred target. This baseline can encode visual properties of an object beyond its FG class

enabling rich (context-free) distinctions (e.g.,“very small, or yellow colored chair”).

3. Vision + Language + Holistic Context (V + L + C): Similar to the above, but also fuses a

PointNet++ scene-feature with each object’s visual feature to ground the RNN. This enables

the inspection of non-structured context when solving the reference task (PointNet++ is applied

on a non-segmented scene point cloud).

4. Vision + Language + Graph (structured) Context (ReferIt3DNet): This is our proposed

listener and comes in three variants that differ w.r.t. where we fuse the linguistic with the

visual information.

Neural Listeners. Comparisons for the above models are presented in Table 6.3. We observe the

following main trends‡: i) using the visual and linguistic auxiliary classification losses improves

performance; ii) Simplified language (Sr3D) makes identification easier; iii) scene context matters

a lot, but most importantly how we incorporate the context (e.g., via DGCN, or direct fusion of

PointNet++) makes an important difference in performance. As expected, a more structured versus

a rudimentary representation favors better results; iv) where we fuse language matters as well:

ReferIt3DNet-A fuses after the DGCN, ReferIt3DNet-B before, and the best performing (for Nr3D)

model fuses in both places.

The results shown in Fig. 6.6 show the neural listener’s capability to understand and locate

objects in challenging 3D scenarios. For example, the top-right example was successful despite

the utterance being long. Referring to this particular trashcan among other similar ones requires

both spatial reasoning and visual 3D understanding. Similar capability can be demonstrated in the

two examples in the second row about the door and the cabinets. Finally, the last row shows two

challenging failure cases of our model. In the bottom-left example, the utterance has wrongly placed
‡In all results mean accuracies and standard errors across 5 random seeds are reported, to control for the point cloud

scene sampling.
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Table 6.3: Listening performance of various ablated models. The first two columns contain the
obtained accuracy when no auxiliary losses are used, and the last two the accuracy when these losses
are included.

Nr3D Sr3D Nr3D Sr3D
Aux. classification loss No Yes

Decoupled 25.5% 31.7% - -
V + L 26.1%±0.5% 32.6%±0.4% 26.6%±0.5% 33.0%±0.4%

V + L + C 27.5%±0.6% 34.7%±0.4% 28.5%±0.6% 37.2%±0.4%
ReferIt3DNet-A 32.3%±0.3% 39.7%±0.3% 33.4%±0.3% 41.0%±0.3%
ReferIt3DNet-B 31.8%±0.3% 38.1%±0.2% 33.0%±0.3% 40.5%±0.2%

ReferIt3DNet 32.4%±0.5% 38.4%±0.2% 35.6%±0.7% 39.8%±0.2%

Table 6.4: ScanRefer performance with/out Sr3D. MeanIoU improvements when combining Sr3D
data with ScanRefer’s data during training.

Dataset Unique Multiple Overall
P@0.25 P@0.5 P@0.25 P@0.5 P@0.25 P@0.5

ScanRefer 53.8% 37.5% 21.0% 12.8% 26.4% 16.9%
w/ Sr3D 60.0% 39.1% 21.7% 14.3% 28.0% 18.4%

w/ Sr3D+ 63.6% 42.2% 24.1% 15.8% 30.6% 20.1%

the listener in the room (the chair is at the 3 o’clock position instead of 9). The bottom-right example

is particularly hard to solve; the scene is almost symmetric and stripped of visual features, making it

hard to discriminate among the chairs.

Combining Nr3D & Sr3D. In Table 6.2, we observe how combining the two datasets provides

a consistent boost in performance. This demonstrates the benefit of training with a synthetically

generated dataset in addition to a dataset containing natural utterances. We see a similar outcome

when combining Sr3D with the ScanRefer [54] training data (see Table 6.4). Specifically, for

this experiment we used the publicly available author’s implementation of the “xyz+rgb+lobjcls”

localization variant ([53]), which is most similar in terms of the used input to our setup. We also note

that the results in Table 6.4 concerning training without the addition of Sr3D (first row) are taken

from ScanRefer’s [v1] arXiv report which was available at the time of writing this paper. Going

back to Table 6.2, the results showcase that our neural listener performs better by a large margin

in “easy” versus “hard” cases. This is expected and highlights that more work needs to be done in

distinguishing objects when there are many fine-grained-same-class distractors in a scene. Another

interesting finding is that view-independent utterances are easier to comprehend than view-dependent

ones. This is an intuitive finding since the network naturally has more work to do to understand
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Figure 6.6: Qualitative results. Successful cases of applying ReferIt3DNet are shown in the top four
images and failure ones in the bottom two. Targets are shown in green boxes, intra-class distractors in
red, and the referential text is displayed under each image. The network predictions are shown inside
dashed yellow circles, along with the inferred probabilities. We omit the probabilities of inter-class
distractors to ease the presentation.

nuances related to the view of the scene relative to a specific object.
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6.6 Conclusion

Language assisted object disambiguation done directly for 3D objects in 3D environments is a novel

but very challenging task. This is especially true when one tries to distinguish among multiple

instances of the same fine-grained object category. In addition to the intrinsic difficulty of the

problem, there is a scarcity of appropriate datasets. Creating relevant visio-linguistic data that allow

us to study this problem is important for advancing 3D deep-learning that, similar to 2D visual

learning, is a data hungry methodology. While our neural listeners are a promising first step, more

research has to be done before human-level performance and generalization is attained. In summary,

this chapter has (a) introduced the problem of fine-grained multi-instance 3D object identification in

real-world scenes; (b) contributed two relevant public datasets; and (c) explored an array of sensible

neural architectures for solving the referential task.



Chapter 7

Conclusions & Future Work

7.1 Connecting the Dots

This thesis systematically introduced our work on 3D object-centric machine learning by focusing

on it from two complementary angles: introducing generative networks for 3D shape synthesis and

language-guided discriminative networks for 3D object/shape differentiation. Our works, taken

together, have explored deep-learning-based methods involving most of the major digital formats for

representing 3D objects: point clouds, voxel grids, meshes, and 2D object renderings – adapting the

techniques to the intricacies of each modality, but also abstracting away from it to provide a general

treatment of 3D objects and learning. We begun in Chapter 2 by introducing self-supervised neural

models that can learn semantically rich latent representations of 3D objects represented as point

clouds. The resulting latent space while being powerful in several perception tasks, e.g., improving

the state-of-the-art in unsupervised object recognition, did not offer a straightforward mechanism to

manipulate the latent representation, aside from doing ‘basic’ linear algebra. The next Chapter 3,

addressed partially this limitation by introducing an intuitive structural bias in the construction

of the latent space: the latents should obey a factorization w.r.t. the commonly found part-based

composition of 3D objects. Tapping on this factorization we introduced novel applications for deep

shape synthesis including part-aware latent interpolations of objects, and mixing-&-matching their

parts also in the latent space. The next chapter, Chapter 4, also concerns the creation of a latent

space for 3D objects, but unlike the previous two it does not apply an auto-encoding like scheme.

Instead, its main idea is the proposition of learning to reconstruct a shape from a compact matrix that

encapsulates how a shape is geometrically different from a fixed ‘base’ shape. Tapping on the matrix

nature of its inputs this approach results in a latent space where multiplicative (matrix) algebra is
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possible which in turn often lead in better shape interpolations and analogies compared to the linear

approach of Chapter 2.

Overall, these first three chapters concern generative networks and latent space constructs for 3D

shapes with various trade-offs. However, a key desideratum that any latent space of shapes should

obey, is to be able to represent all the diversity of the underlying distribution of shapes. Developing

techniques that can ensure such a property, naturally implies the development of trustworthy methods

for measuring how (any) two shapes are different. While Chapter 4 provided some initial tools in

this direction, e.g., learning how two shapes are geometrically different given dense correspondences,

humans typically approach this problem differently. Humans can abstract a shape w.r.t. to its parts,

style, average size (w.r.t. an imaginative shape collection), etc. – and by using natural language can

succinctly describe a shape’s most salient differences against any other shape. Chapter 5 is built

upon these intuitions and provided an in depth study that connected shape-differentiation and natural

language. It introduced a relevant dataset (ShapeGlot) and the first neural-listeners/speakers that

similar to humans can reason about pragmatic shape differences with language. Interestingly, the

developed neural systems acquired a strong sense of shape part-awareness only under the guiding

training signal of referential language – i.e., without operating in latent spaces that were explicitly

trained to capture the part-based composition of objects (like that of Chapter 3). Finally, with our last

chapter, Chapter 6 we extended the scope of our investigation on the interplay between differentiating

language and 3D shapes. Unlike the previous chapters, here, we focused on how an object might

be different from other objects of the same class, but with which it co-exists inside a real-world

scene. Similarly to Chapters 5 and 6 we used point clouds to represent the objects’ geometries and

textures, and language to form the differentiating signal. However, for this cognitive task, as our

introduced visio-linguistic dataset (ReferIt3D) revealed, while shape and texture are frequently used

by humans to differentiate an object, its non-unary relation to other objects, e.g., its spatial location,

is almost always necessary in identifying in a scene. This fact in turn demanded the creation of a

more complicated latent space for objects than the previous ones explored in this thesis – one where

objects were analyzed jointly (via graph-neural-networks) to reflect how they co-exist in a scene.

7.2 Going Forward

This thesis covers a relatively broad spectrum of research material, as it attempts to bring closer

together two distinct topics: the generation of 3D objects and referential language concerning

them. Moreover, each of its primary works (Chapter 2, Chapter 5, Chapter 6), introduced a new
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problem in the deep learning literature at the time of the corresponding publication. Because of

these conditions, naturally there are still many relevant problems, techniques and ideas that could be

used in conjunction with the presented material to further explore how one can deep learn referential

language and 3D objects together. After all, this is a very recent (but rapidly evolving) direction in

the Computer Vision and Computational Linguistics communities. Below, I present some of these

untapped ideas and problems that I find promising and which I hope will be explored in more depth

in the near future. First, I will describe some straightforward ways one could try to connect further

the “dots” of this thesis, by exploiting together and in novel ways some of the presented materials.

Then, I will present a brief open-ended discussion of closely related problems in the broader context

of connecting language to vision.

7.2.1 Dots left disconnected

The two most salient possibilities that one could exploit to further bridge the gap between shape and

language by using materials from this thesis, concern the incorporation of ideas from Chapters 3 and 4

in the creation of multi-modal neural-listeners/speakers like those presented in the later chapters.

Specifically, and as it is discussed above, the developed multi-modal neural-nets of Chapter 5 acquire

an understanding of the semantic parts an underlying shape has, from language alone, without ever

using them explicitly in their respective loss functions. However, by using existing collections

of semantic 3D shape parts like PartNet [192], and ideas similar to those presented in Chapter 3,

one could design neural-listeners/speakers that embed the underlying objects into a latent space

that factorizes their semantic parts instead of using a holistic latent space like the one presented in

Chapter 2. Such an action should promote a disentangled treatment among the referred parts-words

of a sentence (‘the leg’, ‘the back’ etc.) and their actual underlying 3D geometries (e.g., the point

cloud corresponding to a chair’s leg or back) . As we already have shown, a simple word-to-word

attention mechanism can automatically learn to focus on part words when relevant for the reference

task (Figure 5.4). It is conceivable that we can extend this mechanism to a word-to-part attention,

that learns the mapping among part words and their corresponding 3D semantic parts; which in

turn can be used to localize where the neural reasoning takes place, i.e., attend to the latents of the

mentioned part(s).

Aside of the ideas of Chapter 3, the main proposal of Chapter 4 also offers some appealing

potential for improving the quality and performance of multi-modal neural-listeners/speakers that

jointly examine geometry and discriminative language. Chapter 3 explores the usage of shape-

difference matrices that capture how one shape is different shape-wise from another and attempts
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deep learning them. First, it would be interesting to see to what extent one can use such matrices

in place of the latent representations arising from auto-encoding-like schemes. Of course, given

the requirement of having correspondences to create shape-difference matrices; one would have

to rely here on extracting approximate correspondences (e.g., [201]) to work with arbitrary shapes.

Second, one can extract shape-differences among and only the shapes that are being contrasted (e.g,

triplets of ShapeGlot or scene-objects of ReferIt3D), instead of using an a priori fixed base shape

which should enhance the relevance of such a signal for the down-stream reference task. Last, it

would be interesting to try the reverse direction: using referential (linguistic) data to influence the

creation of geometry-aware shape-differences; since referential language tends to focus on the most

salient shape/object differences it can provide a focal point for where most geometric comparisons

underlying a shape difference matrix should occur.

7.2.2 Discussion of open relevant problems and limitations

Deep learning is clearly taking our world by storm and the future opportunities in applying it seem

vast. This thesis concerns multi-modal learning more than anything else, which is still a relatively

underdeveloped field. A key difficulty when it comes to connecting language to vision (as in 3D

objects) concerns the difference these two modalities have in terms of their generality as discussed in

Section 1.1.4. How to equip a latent visual space to better reflect the richness/details that one can

express in language about the underlying stimuli is not exactly known. One can think of creating

latent-spaces for visual objects by jointly inspecting the object collection and external language that

describes differences or properties of the encoded objects. By having access to the rich-label set of

language one can at least hope to pay more attention to the language’s most salient/common-found

expressed semantics, while they build visual generative models. Assuming that the collected human

language talks about the most important aspects of the encoded items, paying more attention to it

(with a multi-modal loss function), should create latent spaces that better preserve the crucial visual

details. However, any such an approach, does not appear to be scalable, as collecting referential

language that is ‘’complete” in the sense that it captures all essential visual properties in all possible

comparisons is clearly infeasible. For simple shapes of a limited class of common objects we created

ShapeGlot. For contrasting monochromatic colors, Monroe et al. [193] collected another large scale

dataset. How do we escape such highly specialized (and expensive) datasets to scale referential

language in the wild? It seems reasonable that we will need some smart prior that can promote

transferability among the learned representations and tasks. For instance, an extreme prior is to

assume a product-like factorized decomposition of reference-making in the wild, that combines
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measurements about distinct properties of the visual world, like its color and shapes, independently.

Such a prior, which seems too optimistic, would drastically reduce the language-acquisition cost and

the underlying learning complexity. In general, it would be exciting to see new research that brings

somewhat established ideas and priors, described in cognitive science concerning the vision/language

world (e.g., [268, 70, 44]), in the context of learning with neural networks.

Finally, a few practical problems and applications that are low-hanging fruits directly related to

this thesis are the following: First, can we use referential language as an auxiliary signal to enable

directed changes over a given stimulus – say make the legs of given chair thinner. Our recent paper

on shape deformation learning [261] finds latent directions that one can use to change (consistently)

the shape of objects in a collection. Language could be a used here as a user-friendly “knob” that

expresses the actual change a user wants to perform w.r.t. to a specific input item. Similarly and

secondly, one can extend language for manipulating objects embedded in 3D scenes: for that we

would need machines like the neural-listeners presented in Chapter 6 which can identify and isolate

the object(s) we want to manipulate; and mechanisms that can act on them, e.g., to change their

location, appearance etc. ([297, 172]). Last, creating discriminative neural-speakers for objects

embedded in 3D scenes, is a promising application that can find usages in making smarter 3D

interactive environments for mixed/augmented reality. Given the performance gap between humans

and our 3D neural-listeners from Chapter 6, attempting to implement their (harder) generative

speaking counterparts, like we did in Chapter 5, seems too bold. Luckily, the last few months since

our introduction of the 3D-listening problem [4] a spark of interest has been ignited with many

new approaches improving the state-of-the-art [78, 306, 209, 231, 100, 316], increasing the range of

possible novel applications.
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[74] Fethiye Irmak Doğan, Sinan Kalkan, and Iolanda Leite. Learning to generate unambiguous

spatial referring expressions for real-world environments. Computing Research Repository

(CoRR), 2019.

[75] Anastasia Dubrovina, Fei Xia, Panos Achlioptas, Mira Shalah, Raphael Groscot, and

Guibas Leonidas J. Composite shape modeling via latent space factorization. International

Conference on Computer Vision (ICCV), 2019.

[76] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for 3d object

reconstruction from a single image. Computing Research Repository (CoRR), abs/1612.00603,

2016.

[77] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan. Object

detection with discriminatively trained part-based models. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 2010.

[78] Mingtao Feng, Zhen Li, Qi Li, Liang Zhang, Xiangdong Zhang, Guangming Zhu, Hui Zhang,

Yaonan Wang, and Ajmal Mian. Free-form description guided 3D visual graph network for

object grounding in point cloud. Computing Research Repository (CoRR), abs/2103.16381,

2021.

[79] A. Martin Fischler and Elschlager A. Robert. The representation and matching of pictorial

structures. IEEE Transactions on Computers., 1973.

[80] Daniel Fried, Jacob Andreas, and Dan Klein. Unified pragmatic models for generating and

following instructions. Computing Research Repository (CoRR), abs/1711.04987, 2017.

[81] Tsu-Jui Fu, Xin Eric Wang, and W. Wang. Language-driven image style transfer. Computing

Research Repository (CoRR), abs/2106.00178, 2021.

[82] Edward Gibson, Richard Futrell, Julian Jara-Ettinger, Kyle Mahowald, Leon Bergen, Sivalo-

geswaran Ratnasingam, Mitchell Gibson, Steven T. Piantadosi, and Bevil R. Conway. Color

naming across languages reflects color use. Proceedings of the National Academy of Sciences

(PNAS), 2017.



BIBLIOGRAPHY 123

[83] Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a predictable

and generative vector representation for objects. In European Conference on Computer Vision

(ECCV), 2016.

[84] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-

ward neural networks. In International Conference on Artificial Intelligence and Statistics

(AISTATS), 2010.

[85] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[86] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.

[87] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in

Neural Information Processing Systems (NeurIPS), 2014.

[88] Noah D. Goodman and Michael C. Frank. Pragmatic language interpretation as probabilistic

inference. Trends in Cognitive Sciences, 2016.
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[273] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive

predictive coding. Computing Research Repository (CoRR), abs/1807.03748, 2018.

[274] Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev,

and Cordelia Schmid. Learning from synthetic humans. In CVPR, 2017.

[275] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural

Information Processing Systems (NeurIPS), 2017.

[276] Ramakrishna Vedantam, Samy Bengio, Kevin Murphy, Devi Parikh, and Gal Chechik. Context-

aware captions from context-agnostic supervision. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2017.



BIBLIOGRAPHY 141

[277] Evangelos Ververas and Stefanos Zafeiriou. Slidergan: Synthesizing expressive face images

by sliding 3d blendshape parameters. In International Journal of Computer Vision (IJCV),

2020.

[278] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural

image caption generator. In Conference on Computer Vision and Pattern Recognition (CVPR),

2015.

[279] Fan Wang, Qixing Huang, and Leonidas J Guibas. Image co-segmentation via consistent

functional maps. In Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

[280] Hao Wang, Nadav Schor, Ruizhen Hu, Haibin Huang, Daniel Cohen-Or, and Hui Huang.

Global-to-local generative model for 3d shapes. ACM SIGGRAPH Asia, 2018.

[281] He Wang, Zetian Jiang, Li Yi, Kaichun Mo, Hao Su, and Leonidas J. Guibas. Rethinking

sampling in 3D point cloud generative adversarial networks. Computing Research Repository

(CoRR), abs/2006.07029, 2020.

[282] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-cnn: Octree-based

convolutional neural networks for 3d shape analysis. ACM Transactions on Graphics (TOG),

2017.

[283] Sida I Wang and Christopher D Manning. Baselines and bigrams: Simple, good sentiment

and topic classification. In Annual Meeting of the Association for Computational Linguistics

(ACL), 2012.

[284] Xiaolong Wang and Abhinav Gupta. Generative image modeling using style and structure

adversarial networks. In European Conference on Computer Vision (ECCV), 2016.

[285] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.

Solomon. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics

(TOG), 2019.

[286] Yueqing Wang, Zhige Xie, Kai Xu, Yong Dou, and Yuanwu Lei. An efficient and effec-

tive convolutional auto-encoder extreme learning machine network for 3d feature learning.

Neurocomputing, 2016.



BIBLIOGRAPHY 142

[287] Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga, and Hao Li. Dense human body

correspondences using convolutional networks. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[288] Ronald J. Williams and David Zipser. A learning algorithm for continually running fully

recurrent neural networks. Neural Computation, 1989.

[289] Ludwig Wittgenstein. Philosophical Investigations: The English Text of the Third Edition.

Macmillan, 1953.

[290] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a

probabilistic latent space of object shapes via 3d generative-adversarial modeling. In Advances

in Neural Information Processing Systems (NeurIPS), 2016.

[291] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah,

Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,

Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason

Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Gregory S. Corrado, Macduff Hughes, and

Jeffrey Dean. Google’s neural machine translation system: Bridging the gap between human

and machine translation. Computing Research Repository (CoRR), abs/1609.08144, 2016.

[292] Zhijie Wu, Xiang Wang, Di Lin, Dani Lischinski, Daniel Cohen-Or, and Hui Huang. SAGNet:

Structure-aware generative network for 3d-shape modeling. ACM SIGGRAPH, 2019.

[293] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and

Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Conference on

Computer Vision and Pattern Recognition (CVPR), 2015.

[294] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised feature learning via

non-parametric instance-level discrimination. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

[295] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese.

Gibson env: Real-world perception for embodied agents. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2018.



BIBLIOGRAPHY 143

[296] Yongqin Xian, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning –

a comprehensive evaluation of the good, the bad and the ugly. Computing Research Repository

(CoRR), abs/1707.00600, 2020.

[297] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu,

Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel Chang, Leonidas Guibas, and Hao Su.

SAPIEN: A simulated part-based interactive environment. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2020.

[298] Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and Zheng Zhang. The

application of two-level attention models in deep convolutional neural network for fine-grained

image classification. In Conference on Computer Vision and Pattern Recognition (CVPR),

2015.

[299] Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi, Leonidas J. Guibas, and Or Litany. Point-

Contrast: Unsupervised pre-training for 3D point cloud understanding. Computing Research

Repository (CoRR), abs/2007.10985, 2020.

[300] Kai Xu, Hanlin Zheng, Hao Zhang, Daniel Cohen-Or, Ligang Liu, and Yueshan Xiong.

Photo-inspired model-driven 3d object modeling. In ACM Transactions on Graphics (TOG),

2011.

[301] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov,

Richard Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation

with visual attention. Computing Research Repository (CoRR), abs/1502.03044, 2016.

[302] Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel,

and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual

attention. In International Conference on Machine Learning (ICML), 2015.

[303] Jianwei Yang, Zhile Ren, Mingze Xu, Xinlei Chen, David Crandall, Devi Parikh, and Dhruv

Batra. Embodied visual recognition. Computing Research Repository (CoRR), abs/1904.04404,

2019.

[304] Yongxin Yang and Timothy M Hospedales. A unified perspective on multi-domain and

multi-task learning. In International Conference on Learning Representations (ICLR), 2015.



BIBLIOGRAPHY 144

[305] Ze Yang, Tiange Luo, Dong Wang, Zhiqiang Hu, Jun Gao, and Liwei Wang. Learning to navi-

gate for fine-grained classification. Computing Research Repository (CoRR), abs/1809.00287,

2018.

[306] Zhengyuan Yang, Songyang Zhang, Liwei Wang, and Jiebo Luo. SAT: 2d semantics assisted

training for 3D visual grounding. Computing Research Repository (CoRR), abs/2105.11450,

2021.

[307] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu,

Qixing Huang, Alla Sheffer, and Leonidas J. Guibas. A scalable active framework for region

annotation in 3d shape collections. ACM Transactions on Graphics (TOG), 2016.

[308] Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. SyncSpecCNN: Synchronized spectral

CNN for 3d shape segmentation. Computing Research Repository (CoRR), abs/1612.00606,

2016.

[309] A. Yu and K. Grauman. Fine-grained visual comparisons with local learning. In Conference

on Computer Vision and Pattern Recognition (CVPR), 2014.

[310] A. Yu and K. Grauman. Semantic jitter: Dense supervision for visual comparisons via

synthetic images. In International Conference on Computer Vision (ICCV), 2017.

[311] Licheng Yu, Zhe Lin, Xiaohui Shen, Yangm Jimei, Xin Lu, Mohit Bansal, and L. Tamara Berg.

Mattnet: Modular attention network for referring expression comprehension. Conference on

Computer Vision and Pattern Recognition (CVPR), 2018.

[312] Licheng Yu, Patrick Poirson, Shan Yang, C. Alexander Berg, and L. Tamara Berg. Modeling

context in referring expressions. European Conference on Computer Vision (ECCV), 2016.

[313] Licheng Yu, Hao Tan, Mohit Bansal, and Tamara L. Berg. A joint speaker-listener-reinforcer

model for referring expressions. Computing Research Repository (CoRR), abs/1612.09542,

2017.

[314] Yi Yu, Abhishek Srivastava, and Simon Canales. Conditional lstm-gan for melody generation

from lyrics. ACM Transactions on Multimedia Computing, Communications, and Applications

(TOMM), 2021.



BIBLIOGRAPHY 145

[315] Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian. Deep modular co-attention networks

for visual question answering. In Conference on Computer Vision and Pattern Recognition

(CVPR), 2019.

[316] Zhihao Yuan, Xu Yan, Yinghong Liao, Ruimao Zhang, Zhen Li, and Shuguang Cui. In-

stanceRefer: Cooperative holistic understanding for visual grounding on point clouds through

instance multi-level contextual referring. International Conference on Computer Vision

(ICCV), 2021.

[317] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov,
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Appendix A

AutoEncoders and GANs for 3D Point
Clouds Objects

A.1 AE Details

The encoding layers of our AEs were implemented as 1D-convolutions with ReLUs, with kernel size

of 1 and stride of 1, i.e. treating each 3D point independently. Their decoding layers, were MLPs

built with FC-ReLUs. We used Adam [129] with initial learning rate of 0.0005, �1 of 0.9 and a batch

size of 50 to train all AEs.

A.1.1 AE used for SVM-based experiments

For the AE mentioned in the SVM-related experiments of Section 2.7.1 of the thesis, we used an

encoder with 128, 128, 256 and 512 filters in each of its layers and a decoder with 1024, 2048, 2048⇥
3 neurons, respectively. Batch normalization was used between every layer. We also used online data

augmentation by applying random rotations along the gravity-(z)-axis to the input point clouds of

each batch. We trained this AE for 1000 epochs with the CD loss and for 1100 with the EMD.

A.1.2 All other AEs

For all other AEs, the encoder had 64, 128, 128, 256 and k filters at each layer, with k being the

bottle-neck size. The decoder was comprised by 3 FC-ReLU layers with 256, 256, 2048 ⇥ 3 neurons

each. We trained these AEs for a maximum of 500 epochs when using single class data and 1000

epochs for the experiment involving 5 shape classes (end of Section 2.7.4, thesis).
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Figure A.1: The bottleneck size was fixed at 128 in all single-class experiments by observing the
reconstruction loss of the AEs, shown here for various bottleneck sizes, when training with the data
of the chair class.

A.1.3 AE regularization

To determine an appropriate size for the latent-space, we constructed 8 (otherwise architecturally

identical) AEs with bottleneck sizes k 2 {4, 8 . . . , 512} and trained them with point clouds of the

chair object class, under the two losses (Fig. A.1). We repeated this procedure with pseudo-random

weight initializations three times and found that k = 128 had the best generalization error on the test

data, while achieving minimal reconstruction error on the train split.

Remark. Different AE setups brought no noticeable advantage over our main architecture.

Concretely, adding drop-out layers resulted in worse reconstructions and using batch-norm on the

encoder only, sped up training and gave us slightly better generalization error when the AE was

trained with single-class data. Exclusively, for the SVM experiment of Section 5.1 of the thesis we

randomly rotate the input chairs to promote latent features that are rotation-invariant.

A.2 SVM Parameters for Auto-encoder Evaluation

For the classification experiments of Section 5.1 (thesis) we used a one-versus-rest linear SVM

classifier with an l2 norm penalty and balanced class weights. The exact optimization parameters

can be found in Table A.1. The confusion matrix of the classifier evaluated on our latent codes on

ModelNet40 is shown in Fig. A.2.
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Loss ModelNet40 ModelNet10

C-plt icpt loss C-plt icpt loss
EMD 0.09 0.5 hng 0.02 3 sq-hng
CD 0.25 0.4 sq-hng 0.05 0.2 sq-hng

Table A.1: Training parameters of SVMs used in each dataset with each structural loss of the AE.
C-penalty (C-plt): term controlling the trade-off between the size of the learned margin and the
misclassification rate; intercept (icpt): extra dimension appended on the input features to center them;
loss: svm’s optimization loss function: hinge (hng), or squared-hinge (sq-hng).

A.3 r-GAN Details

The discriminator’s first 5 layers are 1D-convolutions with stride/kernel of size 1 and {64, 128, 256, 256, 512}
filters each; interleaved with leaky-ReLU. They are followed by a feature-wise max-pool. The last 2

FC-leaky-ReLU layers have {128, 64}, neurons each and they lead to single sigmoid neuron. We

used 0.2 units of leak.

The generator consists of 5 FC-ReLU layers with {64, 128, 512, 1024, 2048 ⇥ 3} neurons each.

We trained r-GAN with Adam with an initial learning rate of 0.0001, and beta1 of 0.5 in batches of

size 50. The noise vector was drawn by a spherical Gaussian of 128 dimensions with zero mean and

0.2 units of standard deviation.

Some synthetic results produced by the r-GAN are shown in Fig. 2.10.

A.4 l-GAN Details

The discriminator consists of 2 FC-ReLU layers with {256, 512} neurons each and a final FC layer

with a single sigmoid neuron. The generator consists of 2 FC-ReLUs with {128, k = 128} neurons

each. When used the l-Wasserstein-GAN, we used a gradient penalty regularizer � = 10 and trained

the critic for 5 iterations for each training iteration of the generator. The training parameters (learning

rate, batch size) and the generator’s noise distribution were the same as those used for the r-GAN.

A.4.1 Model selection of GANs

All GANs are trained for maximally 2000 epochs; for each GAN, we select one of its training

epochs to obtain the “final” model, based on how well the synthetic results match the ground-truth

distribution. Specifically, at a given epoch, we use the GAN to generate a set of synthetic point

clouds, and measure the distance between this set and the validation set. We avoid measuring this
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distance using MMD-EMD, given the high computational cost of EMD. Instead, we use either the

JSD or MMD-CD metrics to compare the synthetic dataset to the validation dataset. To further reduce

the computational cost of model selection, we only check every 100 epochs (50 for r-GAN). The

generalization error of the various GAN models, at various training epochs, as measured by MMD

and JSD is shown in Fig. A.3 (left and middle).

Using the same JSD criterion, we also select the number and covariance type of Gaussian

components for the GMM (Fig. A.4, left), and obtain the optimal value of 32 components. GMMs

performed much better with full (as opposed to diagonal) covariance matrices, suggesting strong

correlations between the latent dimensions (Fig. A.4, right).

When using MMD-CD as the selection criterion, we obtain models of similar quality and at

similar stopping epochs (see Table A.2); the optimal number of Gaussians in this case was 40. The

training behavior measured using MMD-CD can be seen in Fig. A.3 (right).

Method Epoch JSD MMD-CD MMD-EMD COV-EMD COV-CD
A 1350 0.1893 0.0020 0.1265 19.4 54.7
B 300 0.0463 0.0020 0.0800 32.6 58.2
C 200 0.0319 0.0022 0.0684 57.6 58.7
D 1700 0.0240 0.0020 0.0664 64.2 64.7
E - 0.0182 0.0018 0.0646 68.6 69.3

Table A.2: Evaluation of five generators on test-split of chair data on epochs/models that were
selected via minimal MMD-CD on the validation-split. We report: A: r-GAN, B: l-GAN (AE-CD),
C: l-GAN (AE-EMD) , D: l-WGAN (AE-EMD), E: GMM-40-F (AE-EMD). GMM-40-F stands for
a GMM with 40 Gaussian components with full covariances. The reported scores are averages of
three pseudo-random repetitions. Compare this with Table 2.4. Note that the overall quality of the
selected models remains the same, irrespective of the metric used for model selection.

A.5 Voxel AE Details

Our voxel-based AEs are fully-convolutional with the encoders consisting of 3D-Conv-ReLU layers

and the decoders of 3D-Conv-ReLU-transpose layers. Below, we list the parameters of consecutive

layers, listed left-to-right. The layer parameters are denoted in the following manner: (number of

filters, filter size). Each Conv/Conv-Transpose has a stride of 2 except the last layer of the 323

decoder which has 4. In the last layer of the decoders we do not use a non-linearity. The abbreviation

”bn” stands for batch-normalization.
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• 323 - model

Encoder: Input ! (32, 6) ! (32, 6) ! bn ! (64, 4) ! (64, 2) ! bn ! (64, 2)

Decoder: (64, 2) ! (32, 4) ! bn ! (32, 6) ! (1, 8) ! Output

• 643 - model

Encoder: Input ! (32, 6) ! (32, 6) ! bn ! (64, 4) ! (64, 4) ! bn ! (64, 2) !
(64, 2)

Decoder: (64, 2) ! (32, 4) ! bn ! (32, 6) ! (32, 6) ! bn ! (32, 8) ! (1, 8) !
Output

We train each AE for 100 epochs with Adam under the binary cross-entropy loss. The learning

rate was 0.001, the �1 0.9 and the batch size 64. To validate our voxel AE architectures, we

compared them in terms of reconstruction quality to the state-of-the-art method of [266] and obtained

comparable results, as demonstrated in Table A.3.

Voxel Resolution 32 64
Ours 92.7 88.4
[266] 93.9 90.4

Table A.3: Reconstruction quality statistics for our dense voxel-based AE and the one of [266] for
the ShapeNetCars dataset. Both approaches use a 0.5 occupancy threshold and the train-test split
of [266]. Reconstruction quality is measured by measuring the intersection-over-union between the
input and synthesized voxel grids, namely the ratio between the volume in the voxel grid that is 1 in
both grids divided by the volume that is 1 in at least one grid.

Sample Set Size COV-CD MMD-CD COV-EMD MMD-EMD
Entire —Train— 97.3 0.0013 98.2 0.0545

1 ⇥ —Test— 54.0 0.0023 51.9 0.0699
3 ⇥ —Test— 79.4 0.0018 78.6 0.0633
Full-GMM/32
(3 ⇥ —Test—) 68.9 0.0018 67.4 0.0651

Table A.4: Quantitative results of a baseline sampling/memorizing model, for different sizes of sets
sampled from the training set and evaluated against the test split. The first three rows show results
of a memorizing model, while the third row corresponds to our generative model. The first row
shows the results of memorizing the entire training chair dataset. The second and third rows show
the averages of three repetitions of the sub-sampling procedure with different random seeds.
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A.5.1 Memorization baseline

Here we compare our GMM-generator against a model that memorizes the training data of the chair

class. To do this, we either consider the entire training set or randomly sub-sample it, to create sets

of different sizes. We then evaluate our metrics between these “memorized” sets and the point clouds

of test split (see Table A.4). The coverage/fidelity obtained by our generative models (last row) is

slightly lower than the equivalent in size case (third row) as expected: memorizing the training set

produces good coverage/fidelity with respect to the test set when they are both drawn from the same

population. This speaks for the validity of our metrics. Naturally, the advantage of using a learned

representation lies in learning the structure of the underlying space instead of individual samples,

which enables compactly representing the data and generating novel shapes as demonstrated by our

interpolations. In particular, note that while some mode collapse is present in our generative results,

as indicated by the ⇠10% drop in coverage, the MMD of our generative models is almost identical to

that of the memorization case, indicating excellent fidelity.

A.6 More Comparisons with Wu et al.

In addition to the EMD-based comparisons in Table 4 of the thesis, in Tables A.5, A.6 we provide

comparisons with [293] for the ShapeNet classes for which the authors have made publicly available

their models. In Table A.5 we provide JSD-based comparisons for two of our models. In Table A.6

we provide Chamfer-based Fidelity/Coverage comparisons on the test split, that complement the

EMD-based ones of Table 4 in the thesis.

Class A B C

Tr+Te Tr Te Tr Te
airplane - 0.0149 0.0268 0.0065 0.0191

car 0.1890 0.0081 0.0109 0.0063 0.0108
rifle 0.2012 0.0212 0.0364 0.0092 0.0214
sofa 0.1812 0.0102 0.0102 0.0102 0.0101
table 0.2472 0.0058 0.0177 0.0035 0.0143

Table A.5: JSD-based comparison between. TODO

Comparisons on training data. In Table A.7 we compare to [290] in terms of the JSD and MMD-

CD on the training set of the chair category. Since [290] do not use any train/test split, we perform 5
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Class MMD-CD COV-CD

A B A B
airplane - 0.0005 - 71.1

car 0.0015 0.0007 22.9 63.0
rifle 0.0008 0.0005 56.7 71.7
sofa 0.0027 0.0013 42.4 75.5
table 0.0058 0.0016 16.7 71.7

Table A.6: Chamfer-based MMD and Coverage comparison among methods

rounds of sampling 1K synthetic results from their models and report the best values of the respective

evaluation metrics. We also report the average classification probability of the synthetic samples to

be classified as chairs by the PointNet classifier. The r-GAN mildly outperforms [290] in terms of its

diversity (as measured by JSD/MMD), while also creating realistic-looking results, as shown by the

classification score. The l-GANs perform even better, both in terms of classification and diversity,

with less training epochs. Finally, note that the PointNet classifier was trained on ModelNet, and

[290] occasionally generates shapes that only rarely appear in ModelNet. In conjunction with their

higher tendency for mode collapse, this partially accounts for their lower classification scores.

Metric A B C D E F
JSD 0.1660 0.1705 0.0372 0.0188 0.0077 0.0048

MMD-CD 0.0017 0.0042 0.0015 0.0018 0.0015 0.0014
CLF 84.10 87.00 96.10 94.53 89.35 87.40

Table A.7: Evaluating six generators on train-split of chair dataset on epochs/models selected
via minimal JSD on the validation-split. We report: A: r-GAN, B: [290] (a volumetric approach),
C: l-GAN(AE-CD), D: l-GAN(AE-EMD), E: l-WGAN(AE-EMD), F: GMM(AE-EMD). Note that
the average classification score attained by the ground-truth point clouds was 84.7%.
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Figure A.2: Confusion matrix for the SVM-based classification of Section 5.1, for the Chamfer
loss on ModelNet40. The class pairs most confused by the classifier are dresser/nightstand, flower
pot/plant. Better viewed in the electronic version.
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Figure A.3: Left/middle: Generalization error of the various GAN models, at various training epochs.
Generalization is estimated using the JSD (left) and MMD-CD (middle) metrics, which measure
closeness of the synthetic results to the training resp. test ground truth distributions. The plots show
the measurements of various GANs. Right: Training trends in terms of the MMD-CD metric for the
various GANs. Here, we sample a set of synthetic point clouds for each model, of size 3x the size of
the ground truth test dataset, and measure how well this synthetic dataset matches the ground truth in
terms of MMD-CD. This plot complements Fig. 2.11 (left), where a different evaluation measure
was used - note the similar behavior.

Figure A.4: GMM model selection. GMMs with a varying number of Gaussians and covariance type
are trained on the latent space learned by and AE trained with EMD and a bottleneck of 128. Models
with a full covariance matrix achieve significantly smaller JSD than models trained with diagonal
covariance. For those with full covariance, 30 or more clusters seem sufficient to achieve minimal
JSD. On the right, the values in a typical covariance matrix of a Gaussian component are shown in
pseudocolor - note the strong off-diagonal components.



A.6. MORE COMPARISONS WITH WU ET AL. 156

Figure A.5: The 32 centers of the GMM fitted to the latent codes, and decoded using the decoder of
the AE-EMD.

Figure A.6: Point cloud completions of a network trained with partial and complete (input/output)
point clouds and the CD loss. Each triplet shows the partial input from the test split (left-most),
followed by the network’s output (middle) and the complete ground-truth (right-most). Also compare
with Fig 2.8 of thesis that portrays the corresponding completions of a network trained with the EMD
loss.



Appendix B

Part-Aware Construction of Latent
Spaces

B.0.1 Decomposer-Composer architecture details

The Decomposer consists of a whole-shape encoder and K projection layers, where K is the number

of semantic part labels. The architecture of the whole-shape encoder is given in Table B.1. The

projection layers are implemented as fully connected layers, with 100 outputs, where 100 is the

dimension of the embedding space.

The Composer consists of a shared part decoder, and a Spatial Transformer Network (STN). The

architecture of the part decoder is given in Table B.2. STN, similar to the original design in [115],

consists of a localization sub-network, and a re-sampling module. The re-sampling module uses

trilinear interpolation, and does not have learned parameters. The localization network receives both

K stacked decoded parts, and the sum of part embeddings, of dimension 100. First, the two inputs

are separately processed: the stacked decoded parts - using two FC layers with 256 outputs; the sum

of part encodings - using one FC layer with 128 outputs. The two results are then concatenated into a

single 384-dimensional vector, and are processed with two additional FC layers with 128 and 12 K

outputs (K times 12 affine transformation parameters), respectively. All FC layers, except for the last

one, are followed by ReLU layers, and dropout layers with a keep probability of 0.7.

B.0.2 Fine-grained classifier architecture details

In the evaluation of the proposed method, we used a binary classifier to estimate the quality of

assembly and how “real” the resulting shapes looked (see Section 4.4 in the paper for detail). The

157
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Type Kernel Stride Outputs Output size
conv. 5 ⇥ 5 ⇥ 5 1 ⇥ 1 ⇥ 1 16 323

conv. 5 ⇥ 5 ⇥ 5 2 ⇥ 2 ⇥ 2 32 163

conv. 5 ⇥ 5 ⇥ 5 2 ⇥ 2 ⇥ 2 64 83

conv. 3 ⇥ 3 ⇥ 3 2 ⇥ 2 ⇥ 2 128 43

conv. 3 ⇥ 3 ⇥ 3 2 ⇥ 2 ⇥ 2 256 23

FC - - 100 1

Table B.1: Whole-shape encoder (Decomposer) architecture. Each convolution layer (“conv.”) is
followed by a Rectified Linear Unit (ReLU) layer, and a batch normalization layer. The last is a
fully-connected layer (“FC”).

Type Kernel Stride Outputs Output size
FC - - 256 23

deconv. 3 ⇥ 3 ⇥ 3 2 ⇥ 2 ⇥ 2 128 43

deconv. 3 ⇥ 3 ⇥ 3 2 ⇥ 2 ⇥ 2 64 83

deconv. 5 ⇥ 5 ⇥ 5 2 ⇥ 2 ⇥ 2 32 163

deconv. 5 ⇥ 5 ⇥ 5 2 ⇥ 2 ⇥ 2 16 163

conv. 5 ⇥ 5 ⇥ 5 1 ⇥ 1 ⇥ 1 1 323

Table B.2: Part decoder (Composer) architecture. The fully-connected layer (“FC”), and every
de-convolution layer (“deconv.”), are followed by a Rectified Linear Unit (ReLU) layer, a batch
normalization layer, and a dropout with keep probability 0.8.

architecture of the classifier is shown in Table B.3.

B.0.3 Additional shape classes

In this section we present shape reconstruction and manipulation results for two additional shape

classes: airplanes and tables. Note that also here all the experiments were performed using unlabeled

input shapes.

Figure B.1 presents the results of a single part exchange between two airplane. Figure B.2

presents the results of assembling an airplane shape from random parts. Figure B.3 presents the

results of a single part exchange between two tables. The results demonstrate the ability of the

proposed method to correctly place and scale the parts. Also, it presents an example (fifth table from

the left) of a failure case of our algorithm on a challenging shape with a one-voxel wide legs, when it

is unable to reconstruct the legs at all, but otherwise places the parts correctly.
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Type Kernel Stride Outputs Output size
DO (0.5) - - 1 323

conv. 6 ⇥ 6 ⇥ 6 2 ⇥ 2 ⇥ 2 32 163

conv. 6 ⇥ 6 ⇥ 6 2 ⇥ 2 ⇥ 2 32 83

conv. 4 ⇥ 4 ⇥ 4 2 ⇥ 2 ⇥ 2 64 43

conv. 2 ⇥ 2 ⇥ 2 2 ⇥ 2 ⇥ 2 64 23

conv. 2 ⇥ 2 ⇥ 2 2 ⇥ 2 ⇥ 2 128 1
DO (0.5) - - 128 1

FC1 - - 128 1
FC2 - - 64 1
FC3 - - 2 1

Table B.3: Architecture of the binary classifier. Each convolution layer (“conv.”) is followed by a
Rectified Linear Unit (ReLU) and a batch normalization layers. Dropout layers (“DO”) have keep
probability of 0.5. The fully-connected layers FC1 and FC2 are followed by batch normalization and
ReLU layers. The classifier produces binary output.

B.0.4 Miscellanea

Projection matrices

As illustrated in Figure B.4, the proposed method succeeds to obtain a set of projection matrices that

sum to an identity. While these matrices are full rank, the plot of their singular values shows that

their approximated ranks are in fact much lower.
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Figure B.1: Single part exchange experiment on airplane shapes. GT denotes ground truth labeled
shapes, REC - reconstruction results, and SWAP - result of exchanging a part between the shapes.

GT COLLECT GT COLLECT GT COLLECT GT COLLECT

Figure B.2: Synthesis-from-parts example for aiplane shapes. GT denotes original test-set shapes,
COLLECT - new shapes assembled from parts of the original shapes.
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Figure B.3: Single part exchange experiment on table shapes. GT denotes ground truth labeled
shapes, REC - reconstruction results, and SWAP - result of exchanging a part between the shapes
(only two parts in this case).
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Singular values of the projection matrices

Figure B.4: Projection matrix analysis. Two upper rows present the obtained projection matrices,
and their sum. The bottom row shows the singular values of the matrices.
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Figure B.5: OperatorNet architecture. Given the shape difference operators as input, OperatorNet
outputs the coordinate functions of a shape. In particular, one can efficiently extract information
from the difference operators (here considered as channels) with a simple and standard network
architecture, which consists of a convolutional encoder and a fully connected decoder built with
dense layers, as shown above.

B.1 OperatorNet

B.1.1 Proof of Theorem 1

Proof. Since X is known to be of rank 3, and G is symmetric, we have, by SVD:

G = �TAXXTA� = U⌃UT ,

where, U, ⌃ are respectively the top 3 singular vectors and singular values of EG. Therefore, we

have �TAXR = U
p

⌃, where R is a 3 ⇥ 3 rigid transformation matrix satisfying RTR = I3⇥3.

In other words, we recover �TA⇠X from EG, where ⇠X = XR is equivalent to X up to rigid

transformations. And to recover the projection of ⇠X in span(�), we simply compute �U
p

⌃.
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Figure B.6: Top row: ground-truth embeddings; middle row: reconstructions from OperatorNet;
bottom row: shapes from the training set, whose shape differences that are closest to the ones of the
test shapes in the top row.

B.1.2 Verification of the Generalization power of OperatorNet

To demonstrate the generalization power of OperatorNet, we show in Figure B.6 our reconstructions

of test shapes from the SURREAL dataset. For comparison, we also retrieve the shapes in the

training set, whose shape differences are the nearest to the ones of the test shapes. In each of the

figures, the top row presents the ground-truth test shapes; the middle row shows reconstructions from

OperatorNet; the bottom row demonstrates the shapes retrieved from the training set via nearest

neighbourhood search regarding shape differences.

It is evident that OperatorNet accurately reconstruct the test shapes, which deviate from the

shapes in the training set significantly, suggesting that our network generalizes well in unseen data.

B.1.3 Comparison of Interpolation Schemes for Shape Differences

In the following experiment we note that, since the shape differences are represented by matrices, it

is also possible to interpolate shape differences linearly, i.e., D(t) = (1 � t)D0 + tD1. However, as

we argue in Section 4.2.1, the multiplicative property of shape differences suggests that it is more

natural to interpolate the difference operators following Eq. (4.6). To illustrate this point, we show in

Figure B.8 interpolated sequences with respect to the two schemes above – the multiplicative one in

the top row and the linear one in the bottom row. It is visually evident that the former leads to more

continuous and evenly deformed sequence. Moreover, we compute the distance between consecutive
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shapes in both sequences and plot the distributions in the bottom panel of Figure B.7 as a quantitative

verification.

Figure B.7: The distances between consecutive reconstructed embeddings for both sequences. The
multiplicative scheme clearly delivers more smooth deformation sequence.

Figure B.8: Reconstructions regarding shape differences interpolated using multiplicative scheme
(first row) and using linear scheme (second row).
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B.1.4 Ablation Study on Network Design

We investigate multiple architectures for OperatorNet. In Table B.4 we compare the reconstruction

performance over different combinations of input shape differences, and different depths of encoders.

We report the performance of 4 different convolutional encoders from 1 to 4 layers deep by

doubling the number of neurons every layer.

Two trends are observed in Table B.4: first, we always achieve the best performance when all

three types of shape differences are used, for all depth of the network; second, fixing the combination

of input shape differences, the network performs better as its depth gets shallower.

Putting these two observations together, we justify our final model, which has one single layer

convolutional encoder and uses all three types of shape differences as input.

Table B.4: Ablation study: auto-encoder performance on DFAUST testset (measured by the loss
function as defined in Eq. (4.9), the errors in the table are at the scale of 10�4).

Encoder architecture Area Ext Conf A+E A+C E+C A+E+C
Conv. 8 8.61 4.29 3.78 3.82 3.41 2.56 2.46
Conv. 8⇥16 9.08 4.54 4.28 4.65 3.93 3.10 3.05
Conv. 8⇥16⇥32 9.90 5.54 4.91 5.59 4.88 3.71 3.55
Conv. 8⇥16⇥32⇥64 11.16 6.39 5.93 6.89 5.42 4.35 4.24



Appendix C

Discriminating the Shape of Objects
with Referential Language

C.1 CiC details

To build the triplets comprising the communication contexts of CiC, we exploited the latent

(bottleneck-derived) vector space of a Point-Cloud based AutoEncoder (PC-AE) [6], trained with

chair-only objects of ShapeNet [46]. Concretely, we used a PC-AE with small bottleneck (64D) to

promote meaningful euclidean distances and after embedding all ⇠ 7000 ShapeNet chairs in the

resulting space, we computed their underlying 2-(euclidean)-nearest-neighbor graph. On this graph,

we selected the 1K chairs with the highest in-degree to ‘seed’ the triplet generation. For each of

the 1K (seed) chairs, we considered it together with its two nearest neighbors from the entire shape

collection to form a Hard triplet. Also, we considered it together with the two chairs that were closest

to it but which were also more distant from it than the median of all pairwise distances, to form

an Easy triplet. The above procedure gives rise to 2000 communication contexts when target vs.

distractor information is ignored. However, to counterbalance the dataset while annotating these

contexts in AMT, we ensured that each chair of a context was considered as a distractor and as a

target, and that each resulting combination was annotated by at least 4 humans. Last, we note that

when building the Hard triplets, we applied a manually tuned distance-threshold, to reject triplets

that contained objects that were ‘too’ close: we found that about ⇠ 3% of chairs had a geometric

duplicate that could vary only wrt. its texture.

167
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C.2 Image and point-cloud pre-training

For the listeners and speakers we trained a PC-AE under the Chamfer loss [6] with a 128D bottleneck

and point clouds with 2048 points extracted from 3D CAD models, uniformly area-wise. We also

fine-tuned a VGG-16 pre-trained on ImageNet on a 8-way classification, with 36,632 rendered

images of textureless 3D CAD models, taken from a single view-point. Concretely, we used images

of the 8 largest object classes of Shape-Net (car, airplane, vessel, sofa, chair, table, lamp, riffle) and a

uniformly random i.i.d. split of [90%, 5%, 5%] for train/test/val purposes. We fine-tuned the network

for 30 epochs. During the first 15 epochs we optimized only the weights of the last (fc8) layer and

during the last 15 epochs the weights of all layers. The attained test classification accuracy was

96.9%. Last, to embed an image for the downstream listening/speaking tasks, we used the 4096D

output activations of the penultimate (fc7) fully-connected layer.

C.3 Pre-processing utterances

We preprocessed the collected human utterances by i) lowercasing, ii) tokenizing by splitting off

punctuation, iii) tokenizing by splitting superlative or comparative adjectives ending in -er, -est to

their stem word, e.g. ‘thinner:’ ! [‘thin’, ’er’] and, iv) replacing tokens that appear once or not

at all in a training split with a special symbol marking an unknown token (<UNK>). Furthermore,

we ignored the utterances comprised by more than 33 tokens (99th percentile) and those for which

the human listener in the underlying trial did not guess correctly the target. Last, we concatenated

listener and speaker utterances from the same trial (in their order of formulation) by adding in the

end of each but the last utterance a special symbol marking a dialogue: (<DIA>), e.g. [‘the’, ‘thin’,

‘chair’, <DIA>, ‘yes’].
XXXXXXXXXXXXXXXX

Hyper
Parameters

Architecture
Baseline Early-Context Combined-Interpretation

Learning rate 0.0005 0.001 0.001
Label-smoothing 0.9 0.9 0.9
L2 regularization 0.3 0.05 0.09

LSTM-input-dropout 0.5 0.7 0.45

Table C.1: Optimal hyper-parameters for ablated neural listener architectures, using both geometric
modalities and word-attention and various degrees of context. Dropout numbers reflect the keep
probability.
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C.4 Listeners details

For the listeners we used a uni-directional LSTM cell with 100 hidden units, the output of which

was passed into a 3-layer MLP with [100, 50, 3] neurons that predicted the triplet’s classification

logits. To the output of each hidden layer of the MLP, batch normalization [113] and a ReLU

[173] non-linearity was applied. The listeners’ word-embedding was initialized with a 100D GloVe

embedding pre-trained on the 6B Wikipedia 2014 corpus, and which was further fine-tuned during

training. The PC-AE (128D) and VGG (4096D) latent vectors, that encoded each object, were passed

as input to the LSTM when only one geometric modality was used. When the two modalities used

together, the PC-AE codes were concatenated with the output of the LSTM, and the concatenated

result was processed by the final MLP. In either case, we first re-embedded these geometric codes

(100D) with 2 separate/single FC-ReLU layers (referred as ‘projection’ layers in the Section 5.5.

An overview of the proposed listener reflecting the overall design choices is given in Fig.5.3. We

used dropout with 0.5 keep probability before the ‘projection’ layers with a drop-out mask that was

the same for the objects of a given triplet. Separate dropout with 0.5 keep probability was applied

in all input vectors of the LSTM (i.e. on the language tokens or the grounding geometric codes).

Last, the ground-truth indicator vectors of each triplet were label-smoothed [264] by assigning 0.933

probability mass to the target and 0.0333 to the distractors (i.e. smoothing of 0.9).

Discussion Label smoothing yielded a mild performance boost of ⇠ 2% across all ablated listener

architectures, in accordance with previous work [264]. We note that we did not manage to improve

the best attained accuracies by applying layer normalization [24] in the LSTM, or adversarial

regularization [189] on the word-embedding. Dropout [257] was by far the most effective form of

regularization for our listeners (⇠[8-9]%), following by L2 weight-regularization of the projection

layers (⇠[2-3]%). Finally, using a separate MLP to process the PC-AE codes, was slightly better than

feeding them directly in the LSTM (after the tokens of each utterance were processed). However,

grounding the LSTM with the PC-AE codes, and using the VGG codes in the end of the pipeline

(either via pre-MLP concatenation or by feeding the latter in the LSTM) deteriorate significantly all

attained results.

Context Ablations We ablated three architectures that used simultaneously images and point-

clouds, word attention and different degrees of context (see Section 5.5 in the thesis). The optimal

Hyper-Parameters (HP) for each architecture are shown in Table C.1. We did a grid search over the

space of HP associated with each architecture separately. To circumvent the exponential growth of
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this space, we search it into two phases. First, we optimized the learning rate (in the regime of [0.0001,

0.0005, 0.001, 0.002, 0.004, 0.005]) in conjunction with the drop-out (keep probability) applied

at the LSTM’s input, in the range [0.4-0.7] with increments of 0.05. Given the acquired optimal

values, we searched for the optimal L2 weight-regularization (in the range of [0.005, 0.01, 0.05,

0.1, 0.3, 0.9]) applied at the two projection layers, and label-smoothing ([0.8, 0.9, 1.0]). For these

experiments we used a single random seed to control for the data splits with the object-generalization

task. We note that for the Early-Context listener, using a single 1D convolutional layer to extract

the grounding vector of each object, appeared to produce better results than using a single FC

layer (or deeper alternatives). This single convolutional layer we used, converted the input signal

[f(vj , vk)||g(vj , vk)||vi] 2 R100⇥3 to a R100⇥1 LSTM-grounding vector for each object vi, with an

8 ⇥ 3 ⇥ 1 kernel and stride 1.

Training We trained the Baseline and the Combined-Interpretation for 500 epochs and the Early-

Context for 350. This was sufficient, as more training increased overfitting without improving the

attained test/val accuracies. We halved the learning every 50 epochs, if the validation error was not

improved in any of them. Namely, every 5 epochs we evaluated the model on the validation split in

order to select the epoch/weights with the best accuracy. Because the Combined-Interpretation is

sensitive in the input order of the object codes, we randomly permute them during training. We use

the Adam [129] (�1 = 0.9) optimizer for all experiments.

C.5 Speaker details

Image-based speaker To find good model parameters for an image-based speaker, we considered

a hyper-parameter search on a literal variant. Similarly, to what we did in the ablations of listener

variants we conducted a two-stage grid search given a single random seed and the object generaliza-

tion task. At the first stage, we searched models varying: a) the hidden neurons of the LSTM (100 or

200), b) the initial learning rate ([0.0005, 0.001, 0.003]), c) the drop-out keep probability applied on

the word-embeddings ([0.8, 0.9, 1.0]) and d) the dropout keep probability applied at the LSTM’s

output ([0.8, 0.9, 1.0]). The two best performing models were further optimized by considering

L2-weight regularization applied at the FC-projection layer (with values in [0, 0.005, 0.01]) and the

dropout keep-probability applied before the FC-projection layer ([0.5, 0.7, 0.9 1.0]). The resulting

optimal parameters are reported in Table C.2.
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LSTM Size Learning rate L2-reg. Word-Dropout Image-Dropout LSTM-out Dropout
200 0.003 0.005 0.8 0.5 0.9

Table C.2: Optimal hyper parameters for literal image-based neural-speaker. The dropout numbers
reflect keep probabilities and the Image-Dropout refers to the dropout applied at the VGG-image
codes, before the FC-projection layer.

Point-cloud-based speaker For the point-based speaker, we did a similar but more constrained

hyper-parameter search as we did for the image-based speaker, by also considering its literal variant.

Here, we fixed the drop-out applied the word-embeddings and to the LSTM’s output (0.8 and

0.9 keep-probability respectively) and ablated the remaining hyper-parameters as we did for the

image-based speaker. We found the same configuration of parameters (Table C.2) to be optimal for

point-based models as well. Exception to this was the the dropout applied to the PC-AE codes before

the FC-projection (no dropout at all was best in this case). Also, the point-based speakers needed

more training to converge than the image-based ones (maximally 400 epochs vs. 300).

Model selection To do model selection for a training speaker, we used a pre-trained listener (with

the same train/test/val splits) which evaluated the synthetic utterances produced by the speaker during

training. To this purpose the speaker generated 1 utterance for each unique triplet in the validation set

via greedy (arg-max) sampling every 10 epochs of training and the listener reported the accuracy of

predicting the target given the synthetic utterance. In the end of training (300 epochs for image-based

speakers vs. 400 for point-based ones), the epoch/model with the highest accuracy was selected.

Other details We initially used GloVe to provide our speakers pre-trained word embeddings, as

in the listener, but found that it was sufficient to train the word embedding from uniformly random

initialized weights (we used the range [-0.1, 0.1]). We also initialized the bias terms of the linear

word-encoding layer with the log probability of the frequency of each word in the training data [122],

which provided faster convergence. We train with SGD and Adam (�1 = 0.9) and apply norm-wise

gradient clipping with a cut-off threshold of 5.0. The training utterances have a maximal length of

33 tokens (99th percentile of the dataset). For any speaker we sampled utterances of the maximum

training length. For the pragmatic speaker we sample and score 50 utterances per triplet at test time

(following Eq. 5.1 of the thesis).

Point-cloud & image-based speaker In preliminary experiments, we attempted to incorporate

both geometric modalities: point-clouds and images in a speaker network, similarly to what we did
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Approach Listener’s Accuracy
Concat (100D) 65.1 ± 0.51%
Concat (200D) 78.2 ± 0.95%

Sum 77.9 ± 0.38%
Serial 79.0 ± 0.32%

Table C.3: Ablating approaches for incorporating simultaneously point-clouds with images in a
literal neural-speakers. Sum: Summing the two latent codes for each object. Concat: Concatenating
the codes. Serial: Feeding them one after the other in the LSTM. Concatenation naturally doubles the
input-dimensions of the LSTM (Concat 200D). To keep them the same as with all other experiments
(100D) we also tested reducing the VGG/PC-AE projection layers to 50 dimensions for each modality
(Concat 100D). Results are averages of 5 samples of utterances for a fixed test dataset.

for the best-performing listener. While, this resulted in a (literal) speaker model that could achieve

higher neural-listener evaluation-accuracy than when either modality was used in isolation, we did

not observe any improvement against the image-based speaker in AMT human-listener experiments.

We attempted three ways of ‘mixing’ the two modalities in a speaker. Namely, for each object of

a communication context: a) providing the LSTM with the concatenation of its projected VGG code

and its projected PC-AE code, b) same as a) but instead of concatenation, using the sum operator, c)

first providing its PC-AE projected code followed at the next time step by its VGG one. We compared

these approaches by using the optimal hyper-parameters for an image-based speaker and only vary

the amount of dropout applied to the point-cloud before the projection layer ([1.0 0.8, 0.6] keep

probability). In all cases, avoiding dropout was best. The final results for a single random-seed and

the object-generalization task are reported in Table C.3. We note that while the optimal speaker

that used two modalities performed slightly better than the image-based speaker, per neural-listener

evaluation, it did not improve the attained performance in preliminary experiments with of human

listeners in AMT.

C.6 Further quantitative results

C.6.1 Listeners: context incorporation
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In Table C.4 we complement the results presented in the thesis at Table 5.1, by including two

more sub-populations (‘Negative’ and ‘Split’). In Table C.5, we repeat this study for listeners trained

and tested on the language generalization task. ‘Negative’ is a subpopulation of utterances that

contain at least one word of negative content e.g. ‘not’, ‘but’ etc. and is comprised by ⇠ 15.0% of

all test utterances. ‘Split’ is smaller subpopulation (⇠ 3.2% of test data) that includes language the

explicitly contrasts the target with the distractors e.g. ‘from the two that have thin legs, the one...’.

We used an ad hoc set of search queries to find such utterances among the test set and found that the

Early-Context architecture does perform noticeably better on these utterances. However, given the

low occurrence of such cases, the resulting effects were not significant and we decided the gains of

Early-Context architecture were not worth the increase in model complexity and rigidity with respect

to context size.

C.6.2 Listeners: part-lesion

Single Part
Lesioned

Single Part
Present

Mentioned Part 44.9% ± 1.2 67.2% ± 1.1
Random Part 68.9% ± 1.3 42.3% ± 1.3

Table C.6: Evaluating the part-awareness of neural listeners by lesioning object parts. Results shown
are for listeners using both point-clouds and images, with average accuracy of 78.8% when intact
objects are used.

We complement Table 5.3 of the thesis, with a similar study (Table C.6) where we ablate our

neural listeners with regards to their sensitivity in referential utterances based on object parts, when

both geometric modalities are used. We have observed that the PC-AE attempts to reconstruct

(decode) noisy but complete models, even when the input is a partial, which could explain the gains

seen in Table C.6 compared to Table 5.3 when lesioning parts.

C.6.3 Speakers: length penalty and listener awareness

To find the optimal length-penalty value (↵, thesis Eq.1) for image-based literal and a context-

unaware speaker variants, we used our best-performing listener to simultaneously score and evaluate

the utterances produced by the speakers for different values of ↵ (Fig. C.1). The best performing

length penalty for a context-unaware speaker is 0.7, and for a literal 0.6. Given the optimal ↵ values,

for these models we show the effect of using different degrees of listener-awareness (�) in Fig. C.1.
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Population
Class entire with part without part

chair 7.1 8.0 (77%) 4.7 (21%)

bed 6.4 7.0 (26%) 5.3 (48%)
lamp 7.3 11.0 (20%) 5.9 (37%)
sofa 10.1 11.0 (72%) 5.9 (15%)
table 6.6 8.0 (40%) 4.9 (42%)
average 7.6 9.3 (39.5%) 5.5 (35.5%)

Table C.7: Average length of utterances for various transfer classes (complementing Table 5, Main
Paper). Between parentheses is reported the percentage of the entire population that is captured by
its specific sub-population. The average (last row) is wrt. the transfer classes only; the chair-category
is displayed for reference.

It is interesting to observe that even the context-unaware speaker can generate utterances that an

evaluating listener can find them very discriminative, as long as is allows to rank them.

In Fig. C.2 we demonstrate the effect that the relative (training) size of the evaluating listener vs.

the ’internal’ listener used by a pragmatic speaker has for the evaluating accuracy, for two values

of �. In either case we observe a slow decline in evaluating accuracy as the training size for the

evaluating listener increases (from 0.5 to 0.9) and consequently the training size for the ’internal’

listener decreases (from 0.5 to 0.1).

Understanding out-of-class reference

We complement the Table 5.5 with the standard-deviations of the underlying accuracies in Table C.8.

We also report simple statistics regarding the underlying transfer classes in Table C.7. We note that

the transfer learning accuracies acquired by listeners operating with both point-clouds and images for

these experiments were significantly lower (⇠ 7% on average). We hypothesize that this is due to the

fact that our (chair-trained) listener models that utilize point-clouds, rely on a pre-trained single-class

PC-AE, unlike the pre-trained VGG (image encoder) which was fine-tuned with multiple ShapeNet

classes. Also, for these experiments, [⇠ 1% ⇠ 7%] (depending on the transfer class) of the tokens

were not in the chair-vocabulary, and we chose to ignore them i.e. treat them as white-space. Last,

per Table C.7 in all transfer classes the with-part population contains quite larger utterances than the

without-part (9.3 vs. 5.5 on average) and that even in the case of lamps, arguably the most dissimilar

category from chairs, 20 + 37 = 57% of the collected utterances are in the known population.
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Figure C.1: Left: Measuring the effect of using different length-penalty (↵) values to select the
top-1 scoring utterance for context-unaware and pragmatic speakers for contexts of the object
generalization validation split (left). Right, measuring the the effect of various �-values used in
turning the context-unaware and literal speakers (� = 0.0) to pragmatic speakers, under the optimal
↵ of the left figure. In both plots, the y-axis reflects the performance of a listener who is used to rank
and evaluate the utterances. Averages are with respect to 5 random seeds controlling the data splits
and the initializations of the neural-networks.

XXXXXXXXXXXPopulation
Class bed chair lamp sofa table

entire 56.4 ±2.0% 77.4 ±0.9% 50.1 ±1.3% 53.6 ±2.0% 63.7 ±1.2%
known 55.8 ±1.5% 77.8 ±0.8% 51.9 ±1.8% 55.0 ±2.0% 65.5 ±0.9%
with part 63.8 ±4.2% 77.0 ±0.8% 60.3 ±4.4% 55.1 ±2.5% 68.3 ±2.6%
without part 51.5 ±3.0% 80.5 ±1.2% 47.1 ±2.8% 54.7 ±5.5% 62.7 ±0.9%

Table C.8: Transfer-learning of neural listeners in novel object classes: average accuracies with
standard deviations (complementing Table C.8, Main Paper). The sub-populations denote entire: all
collected utterances, known: utterances containing only chair-training-vocabulary words, with-part:
subset of known, with utterances containing at least one part-related word, without-part subset of
known and complement of with-part. For reference the test-chair statistics are shown (first row) but
not included in the reported average (last row).
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Figure C.2: Effect of partitioning the training data for the evaluating and ‘internal’ listeners. Here,
we turn context-unaware and literal speakers into pragmatic ones under two � values. The x-axis
shows the fraction (f ) of the training data that was used to train the evaluating listener (the remaining
100 � f% is used to train the internal listener) of the resulting pragmatic speaker. On the y-axis
we display the performance of the evaluating listener for the top-scoring model-generated utterance.
Left: Effect of the length-penalty. Right: Speakers using the most aggressive � = 1.0 value.
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Figure C.3: Examples of lesioning all but the mentioned part. Here, we show the response of a
Baseline listener tested with visual representations of entire objects (left column, three chairs) vs. its
response when it receives only the visual features corresponding to the referred semantic-part (right
column). The corresponding utterance is shown left-most of each row. In these examples the listener
assigns higher confidence to the actual target when the isolated parts are considered instead of the
entire objects, implying that further performance gains can occur with an explicit part-aware visual
attention mechanism.

solid, square backing 
<DIA> hole in back? 
<DIA> no

distractors targetHuman Utterance

0.48listener scores 0.01 0.51 0.32 0.08 0.60

sleek rounded arms, expensive

0.30listener scores 0.11 0.59 0.14 0.05 0.81

0.04listener scores 0.84 0.12 0.07 0.30 0.63

the seat of the chair has a curve

the one with the fattest legs

0.38listener scores 0.43 0.19 0.07 0.13 0.80

distractors target
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Figure C.4: Pragmatic vs. literal speakers for two modalities. More examples of pragmatic
vs. literal generations in Hard contexts. Tor-row includes examples from image-based speakers.
Bottom-row from point-based ones.

the one with the thick-est legs

knobby legspragmatic speaker

distractors target

literal speaker

distractors target distractors target

square arms

with the tall-est back and seat

no arm rests

the one with high-est back

image-based
speakers 

thin-est seat

most square backpragmatic speaker

distractors target

literal speaker

distractors target distractors target

thick-est legs

square rack at bottom of chair

tall-est back

has arms

point-cloud
based speakers 
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Figure C.5: Speaking in novel classes. In orange-color are model-generations of a chair-speaker
describing the non-chair object above it (inside each orange box). Here, we first use a chair-listener to
create easily-separable communication contexts to which we then apply our speaker. Concretely, the
listener scores the utterance-object compatibility of all ShapeNet objects of a given class e.g. table,
under a ‘query’ (utterance) e.g. ‘modern’. We use the top-5 scoring and least-5 scoring objects
(shown in left/right panels of each row respectively) to select at random a target (orange box) from
the former set and two distractors (cyan boxes) from the latter. In the resulting communication
context, we apply our speaker and display in orange-color the generation. The queries used for this
experiment are shown in the left-most part of the Figure.

“the one with the round base”

circular
  base

x

“thinnest legs”

modern

“the widest one”

“the one with the rounded back and arms”

 curved
armrests

Queries
Top Scoring Objects Least Scoring Objects
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mickey mouse ears

six bars on back open arms, no rails on back

metaphors

counting negation

if it were a man’s suit it would have tails 

distractors target distractors target

0.63 0.02 0.35 0.57 0.13 0.30

0.39 0.27 0.34 0.48 0.13 0.39listener scores
human utterance

listener scores

human utterance

Figure C.7: Neural-listener failure cases. Our top-performing listener model appears to struggle to
interpret referential language that relies on metaphors, precisely counting parts, or (to a less degree)
negations. All examples are drawn from the test set and were correctly classified by human listeners
in the original task.

not specific enough

the one with the thicker cushion

pragmatic
0.32 0.21 0.47

0.22 0.48 0.30

literal

listener scores

listener scores

the one with the square base

literally inaccurate 
but relatively true

solid

0.05 0.09 0.86

0.02 0.06 0.92

no holes in back

distractors target distractors target

Figure C.8: Neural-speaker failure cases. Sometimes even the pragmatic speaker produces insuf-
ficiently specific utterances that mention only undiagnostic features, or produces utterances that
are literally false of the target (e.g. there technically is a hole in the back) while still succeeding in
distinguishing the objects.
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C.7 Miscellaneous

Easy word office sofa regular folding wooden stool wheels metal normal rocking
pmi -1.70 -0.94 -0.88 -0.84 -0.83 -0.79 -0.78 -0.71 -0.67 -0.66

Hard word alike identical thickness texture darker skinnier thicker perfect similar larger
pmi 0.69 0.67 0.67 0.66 0.65 0.64 0.63 0.62 0.62 0.61

Table C.9: Most distinctive words in each context type according to point-wise mutual information
(excluding tokens that appeared fewer than 30 times in the dataset). Lower numbers are more
distinctive of Easy and higher numbers are more distinctive of Hard.

Each game consisted of 69 trials (unique triplets) and participants swapped speaker and listener

roles with the conclusion of each trial. The game’s interface is depicted in Figure C.9. Participants

were allowed to play multiple games, but most participants in our dataset played exactly one game

(81% of participants). The most distinctive words in each triplet type (as measured by point-wise

mutual information) are shown in Table C.9).

You are the speaker.

You the back rest and the bottom parts look the same

You top part of the back is wider than in the seat

Partner ok, got it

send

Figure C.9: Reference game interface. Communication was natural without any system constraints
being imposed.
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Figure C.10: Listener’s accuracy for different sizes of training data, under the object generalization
task. The original split includes [80%, 10%, 10%] for training/test/val purposes, thus the maximum
size of training data is 0.8 of the entire dataset corresponding to the value (fraction) 1.0 in the x-axis.
The listener model uses the Baseline architecture with word attention, images and point-clouds and
its accuracy is measured on the original (10%) test split. Results are averages of 5 random seeds
controlling the original data split and the neural-net’s initialization.



Appendix D

Referential Language for Object
Discrimination in the Real-World

D.1 Building Nr3D Details

D.1.1 Making Stimuli

Nr3D is comprised by a total of 41,503 utterances describing objects belonging in one 76 fine-grained

object classes in 5,878 communication contexts (unique sets {S, I}, where S denotes a specific scene,

and I the (single) fine-grained class of the contrasted objects of S). These communication contexts

were created by considering all 707 scenes of ScanNet [63] with all their fine-grained annotated

objects classes. Concretely, a context {S, I} of Nr3D satisfies:

1. 2  |o 2 S \ class-of(o) == I|  6. In words, the contrasted objects are more than 1 but not

more than 6, and they are of the same fine-grained object class.

2. There exist 5 or more scenes, S, for any given I, for which the above condition is satisfied.

3. I is not a structural object class (‘wall’, ‘floor’, ‘ceiling’), nor a part of an object (‘doorframe’,

‘stair rail’, ‘closet wall’), nor an object class that tends to have vague or poorly annotated object

instances (‘object’, ‘decoration’, ‘clothes’, ‘clothing’).

D.1.2 Representing ScanNet Scenes on AMT

To create Nr3D, we utilized the web interface presented in Fig D.1. The 3D scene shown to users

(acting as speakers or listeners) was a decimated mesh representation of a ScanNet scene. The

186
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high-resolution mesh and low resolution (decimated) mesh are obtained from ScanNet[63] dataset.

The decimated mesh is then UV-unwrapped to create texture mapping. The texture is mapped from

high-resolution ScanNet mesh to decimated mesh mentioned above and packed into GLTF2 format.

This way, we can load the decimated mesh in the browser fast while keeping the high visual quality

of the mesh. The users can navigate the scene via rotation, pan, and zoom in any place of the given

scene. The rendering is done in real-time through a web browser using WebGL.

D.2 Spatial References in 3D

Sr3D is built on top of ScanNet [63]. In this section, we will discuss the generation method for each

spatial relation and how we created human-like utterances out of these relations. In Table D.1, we

provide the number of unique communication contexts for each relation type.

Spatial Relation |Contexts|
closest 17,126
farthest 16,875
between 3,569

front 703
behind 113

left 518
right 546

supporting 390
supported by 357

above 960
under 629
Total 41,786

Table D.1: Detailed statistics of Sr3D. For each spatial relation we report the total number of unique
tuples (communication contexts) it creates in ScanNet.

D.2.1 Horizontal Proximity Based Relations

This type of relation describes what the nearest (closest) and the farthest target objects are according

to a unique anchor object in the scene. To generate such relations, we get the list of all anchor objects.

Then for each anchor object and each fine-grained target class, we calculate the pairwise distance

between each same-class target object and this anchor. If the farthest target object to this anchor

object is at a distance of epsilonGap greater than of the second farthest target object, this combination
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of the anchor and the farthest target object is used as a relation. Similar logic is used to get the closest

relations (See Fig. D.2).

D.2.2 Support Relations

The support relations describe whether a target object is supporting (holding) or supported by (held

by) an anchor object. To generate these relations for an anchor object, we need first to get the target

objects that lie in the vicinity of that anchor top/bottom surface. Then, we find the target objects

that their top/bottom surfaces touch the anchor’s bottom/top surface, respectively (See Fig. D.3). To

check if an object is in the vicinity of the anchor object or not, we first look at the two objects’ 2D

bounding boxes in the top view, then we calculate the intersection area between them and the ratio of

the object’s area to the intersection area should be greater than a certain threshold. For an object to

be touching an anchor object, the difference in their bottom/top or top/bottom z surfaces is within a

small range.

D.2.3 Vertical Proximity Based Relations

These relations represent whether a target object is considered above or below the anchor object

without touching each other. The generation method for this type of relation is quite similar to the

support relations, but we make sure that the target and the anchor objects do not touch each other

(See Fig. D.4.)

D.2.4 Between Relations

The between relations describe the target objects that lie between two anchor objects (see Fig. D.5).

To generate such types, we consider all possible pairs of anchor objects. For each anchor pair, we

look at the anchors’ 2D bounding boxes in the top view (XY axes) and find the convex hull of those

2D bounding boxes. We search for target objects that satisfy the following conditions: (a) they do

not intersect with the two anchors; (b) they exist solely inside the convex hull where none of their

distractors are found inside; and (c) intersect with each of the two anchors in the z-axis coordinates.

D.2.5 Allocentric Relations

These relations indicate where a target object might exist with respect to the anchor orientation.

For Example, the armchair (target object) is at the right of the TV (anchor object). For generating

allocentric relations, we need to know: (a) whether the anchor objects have an intrinsic front view
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(e.g., armchair) or not (e.g., stool); and (b) the orientation of the objects in ScanNet. For (a), we used

the annotations of PartNet to extract if a chair has a back or not so as to define which ShapeNet chair

models we will use. Also, we manually annotated several ShapeNet models covering 33 categories

in total. For (b), we utilized the Scan2CAD [23] annotations that provide 9DOF alignments between

ShapeNet models and ScanNet objects. For every anchor object that has an intrinsic front view, we

create four oriented sections (regions) (see Fig. D.6), and we try to find the objects that solely occupy

an oriented section where no distractors of the same object class co-exist in there. For an object

to occupy an anchor’s oriented section solely, the ratio of its points inside the section over its total

number of points should be greater than a certain threshold (occupancy threshold).

D.2.6 Converting Spatial Relations to Natural-like Utterances

To create natural (human) -like utterances from the extracted spatial (geometric) relations, we use

a manually curated set of template-based sentences. Specifically, for each type of spatial relation

we created at least 5 template sentences. Given a target object and spatial relation type/anchor we

create 2 utterances by replacing the “target” and “anchor” placeholders in a sampled template with

the relation’s target and the anchor instance types, respectively.

D.3 Implementation Details

We use 4 graph-convolutional layers for DGCN, each producing an intermediate representation of

128 dimensions. DL, DV are also 128-dimensional each. We set the ↵ and � hyper-parameters

controlling the contribution of the object and text classification losses in the total loss to 0.5 each.

To process the linguistic information in our networks, we use a uni-directional LSTM cell [106]

with 128 hidden units and word embeddings of 64D that were randomly initialized from unit-normal

Gaussian. We note that initializing the embeddings with a 100D GloVe [207] embedding pre-trained

on the 6B Wikipedia 2014 corpus did not give any significant performance boost. For the object

referential loss, we use an MLP([128, 64, 1]) network. We sample 1024 points from the point cloud

of each segmented object before passing it to the object encoder.

D.3.1 Preprocessing utterances

We preprocess the collected human utterances by i) lowercasing, ii) tokenizing by splitting off

punctuation, iii) replacing tokens that appear less than three times in the training split with a special
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symbol marking an unknown token (UNK). Furthermore, we ignore all utterances comprised by

more than 24 tokens (99th percentile) and those for which the human listener in the underlying trial

did not guess the target correctly.

D.3.2 Training details

We use Adam [129] with an initial learning rate of 0.0005 and �1 = 0.9 across all our experiments.

We train each model for a maximum of 100 epochs. We use the test-set to evaluate performance at

the end of each training epoch and stop the training if we encounter 10 consecutive training epochs

without improvement in terms of test accuracy. Our batch size is 32 for all experiments, except for

when we train a model with Nr3D and Sr3D utterances (simultaneously) where we use 64 examples

in each batch. Last, we use a learning-rate scheduler that reduces the learning rate by a multiplicative

factor of 0.65 every 5 consecutive epochs that the test accuracy does not improve.
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Figure D.1: Snapshot of the interface we used in Amazon Mechanical Turk to collect human
utterances while building the Nr3D. The Turkers were instructed to pay attention to all objects in
highlighted boxes while ignoring any sampling artifacts (e.g., holes or broken pieces of the objects).
Furthermore, we motivated the Turkers to be effective by providing them a financial bonus (50% of
their base-pay) each time their produced utterance enabled the paired listener to guess the target.
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Figure D.2: This figure shows the horizontal (farthest/closest) relations. In (a), the target is the
farthest from the anchor object. In (b), it is the opposite. The farthest target to the anchor object
should be at a distance greater than epsilonGap from the distance between the farthest distractor
object and the anchor object.
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Figure D.3: Example of support relations. In (a), the target is supported by the anchor object and in
(b) the target is supporting/holding the anchor object.
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Figure D.4: Examples of vertical (above/below) relations. In (a), the target is above the anchor object
and in (b) it is the opposite. The target and the anchor objects should not be touching each other.



D.3. IMPLEMENTATION DETAILS 195

Figure D.5: Example of a between relation. The green shaded area is where a target object should
be found to be considered between the two anchors. This shaded area is the convex hull of the two
anchor bounding boxes in the top view. None of the target object’s distractors should be inside the
shaded area.
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Figure D.6: Allocentric relations generation. This figure shows how we determine where the target
object might exist with respect to one of the four oriented sections of the anchor (front, back, left,
and right). In this example the target object is at the back of the anchor object.
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